Search > Results

You searched for: EV230381 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV230381 1/1 Filifactor alocis ATCC 35896 (d)(U)C
DG
Filtration
UF
Kim HY 2020 57%

Study summary

Full title
All authors
Kim HY, Lim Y, An SJ, Choi BK
Journal
Mol Oral Microbiol
Abstract
Filifactor alocis, a gram-positive, obligate anaerobic rod, is an emerging periodontal pathogen that (show more...)Filifactor alocis, a gram-positive, obligate anaerobic rod, is an emerging periodontal pathogen that is frequently isolated from patients with periodontitis, peri-implantitis, and apical periodontitis. Recent studies have shown that extracellular vesicles (EVs) from gram-negative periodontal pathogens, so-called outer membrane vesicles (OMVs), harbor various effector molecules responsible for inducing host inflammatory responses. However, there are no reports of EVs from F. alocis. In this study, we purified and characterized the protein profiles of EVs from F. alocis and investigated their immunostimulatory activity on human monocytic THP-1 and human oral keratinocyte HOK-16B cell lines. Highly pure EVs were obtained from F. alocis using density gradient ultracentrifugation. Nanoparticle tracking analysis and transmission electron microscopy showed that F. alocis EVs were between 50 and 270 nm in diameter. Proteome analysis identified 28 proteins, including lipoproteins, autolysins, F. alocis complement inhibitor (FACIN), transporter-related proteins, metabolism-related proteins, and ribosomal proteins. Human cytokine array analysis showed that F. alocis EVs remarkably induced the expression of CCL1, CCL2, MIP-1, CCL5, CXCL1, CXCL10, ICAM-1, IL-1β, IL-1ra, IL-6, IL-8, MIF, SerpinE, and TNF-α in THP-1 cells and CXCL1, G-CSF, GM-CSF, IL-6, and IL-8 in HOK-16B cells. The immunostimulatory activity of F. alocis EVs was similar to that of the whole bacterial cells. Our findings provide new insight into the role of EVs from gram-positive oral bacteria in periodontal diseases. (hide)
EV-METRIC
57% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Filtration
Ultrafiltration
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Filifactor alocis
Sample Type
Cell culture supernatant
EV-producing cells
ATCC 35896
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
P70AT rotor
Pelleting: speed (g)
100000
Density gradient
Type
Continuous
Lowest density fraction
10%
Highest density fraction
40%
Orientation
Bottom-up
Speed (g)
160000
Duration (min)
240
Fraction volume (mL)
0.5
Fraction processing
Centrifugation
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
TDB
Filtration steps
0.2 or 0.22 µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
NS
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
per million cells
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-270
EV concentration
Yes
Particle yield
number of particles per million cells: 1.10E+13
EM
EM-type
Transmission-­EM
Image type
Wide-field
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV230381
species
Filifactor alocis
sample type
Cell culture
cell type
ATCC 35896
condition
Control condition
separation protocol
dUC/
Density gradient/
Filtration/
Ultrafiltration
Exp. nr.
1
EV-METRIC %
57