Search > Results

You searched for: EV230334 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV230334 1/2 Cystobacter ferrugineus Cbfe23 (d)(U)C
SEC (non-commercial)
Filtration
Goes A 2020 57%

Study summary

Full title
All authors
Goes A, Lapuhs P, Kuhn T, Schulz E, Richter R, Panter F, Dahlem C, Koch M, Garcia R, Kiemer AK, Müller R, Fuhrmann G
Journal
Cells
Abstract
In 2019, it was estimated that 2.5 million people die from lower tract respiratory infections annual (show more...)In 2019, it was estimated that 2.5 million people die from lower tract respiratory infections annually. One of the main causes of these infections is , a bacterium that can invade and survive within mammalian cells. intracellular infections are difficult to treat because several classes of antibiotics are unable to permeate through the cell wall and reach the pathogen. This condition increases the need for new therapeutic avenues, able to deliver antibiotics efficiently. In this work, we obtained outer membrane vesicles (OMVs) derived from the myxobacteria strain Cbv34 and strain Cbfe23, that are naturally antimicrobial, to target intracellular infections, and investigated how they can affect the viability of epithelial and macrophage cell lines. We evaluated by cytometric bead array whether they induce the expression of proinflammatory cytokines in blood immune cells. Using confocal laser scanning microscopy and flow cytometry, we also investigated their interaction and uptake into mammalian cells. Finally, we studied the effect of OMVs on planktonic and intracellular . We found that while Cbv34 OMVs were not cytotoxic to cells at any concentration tested, Cbfe23 OMVs affected the viability of macrophages, leading to a 50% decrease at a concentration of 125,000 OMVs/cell. We observed only little to moderate stimulation of release of TNF-alpha, IL-8, IL-6 and IL-1beta by both OMVs. Cbfe23 OMVs have better interaction with the cells than Cbv34 OMVs, being taken up faster by them, but both seem to remain mostly on the cell surface after 24 h of incubation. This, however, did not impair their bacteriostatic activity against intracellular . In this study, we provide an important basis for implementing OMVs in the treatment of intracellular infections. (hide)
EV-METRIC
57% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other/ Outer membrane vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Cystobacter ferrugineus
Sample Type
Cell culture supernatant
EV-producing cells
Cbfe23
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Filtration steps
NS
Size-exclusion chromatography
Total column volume (mL)
60
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
BCA
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Size range/distribution
Reported size (nm)
100-350
NTA
Report type
Size range/distribution
Reported size (nm)
50-250
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
EV230334 2/2 Cystobacter velatus Cbv34 (d)(U)C
SEC (non-commercial)
Filtration
Goes A 2020 43%

Study summary

Full title
All authors
Goes A, Lapuhs P, Kuhn T, Schulz E, Richter R, Panter F, Dahlem C, Koch M, Garcia R, Kiemer AK, Müller R, Fuhrmann G
Journal
Cells
Abstract
In 2019, it was estimated that 2.5 million people die from lower tract respiratory infections annual (show more...)In 2019, it was estimated that 2.5 million people die from lower tract respiratory infections annually. One of the main causes of these infections is , a bacterium that can invade and survive within mammalian cells. intracellular infections are difficult to treat because several classes of antibiotics are unable to permeate through the cell wall and reach the pathogen. This condition increases the need for new therapeutic avenues, able to deliver antibiotics efficiently. In this work, we obtained outer membrane vesicles (OMVs) derived from the myxobacteria strain Cbv34 and strain Cbfe23, that are naturally antimicrobial, to target intracellular infections, and investigated how they can affect the viability of epithelial and macrophage cell lines. We evaluated by cytometric bead array whether they induce the expression of proinflammatory cytokines in blood immune cells. Using confocal laser scanning microscopy and flow cytometry, we also investigated their interaction and uptake into mammalian cells. Finally, we studied the effect of OMVs on planktonic and intracellular . We found that while Cbv34 OMVs were not cytotoxic to cells at any concentration tested, Cbfe23 OMVs affected the viability of macrophages, leading to a 50% decrease at a concentration of 125,000 OMVs/cell. We observed only little to moderate stimulation of release of TNF-alpha, IL-8, IL-6 and IL-1beta by both OMVs. Cbfe23 OMVs have better interaction with the cells than Cbv34 OMVs, being taken up faster by them, but both seem to remain mostly on the cell surface after 24 h of incubation. This, however, did not impair their bacteriostatic activity against intracellular . In this study, we provide an important basis for implementing OMVs in the treatment of intracellular infections. (hide)
EV-METRIC
43% (81st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other/ Outer membrane vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Cystobacter velatus
Sample Type
Cell culture supernatant
EV-producing cells
Cbv34
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Filtration steps
NS
Size-exclusion chromatography
Total column volume (mL)
60
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
BCA
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
70-300
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV230334
species
Cystobacter
ferrugineus
Cystobacter velatus
sample type
Cell culture
Cell culture
cell type
Cbfe23
Cbv34
condition
Control condition
Control condition
separation protocol
dUC/ Size-exclusion
chromatography (non-commercial)/
Filtration
dUC/ Size-exclusion
chromatography (non-commercial)/
Filtration
Exp. nr.
1
2
EV-METRIC %
57
43