Search > Results

You searched for: EV230049 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV230049 1/2 Homo sapiens Brain gray matter (d)(U)C
DG
Filtration
Muraoka S 2020 78%

Study summary

Full title
All authors
Muraoka S, DeLeo AM, Sethi MK, Yukawa-Takamatsu K, Yang Z, Ko J, Hogan JD, Ruan Z, You Y, Wang Y, Medalla M, Ikezu S, Chen M, Xia W, Gorantla S, Gendelman HE, Issadore D, Zaia J, Ikezu T
Journal
Alzheimers Dement
Abstract
Extracellular vesicles (EVs) from human Alzheimer's disease (AD) biospecimens contain amyloid beta ( (show more...)Extracellular vesicles (EVs) from human Alzheimer's disease (AD) biospecimens contain amyloid beta (Aβ) peptide and tau. While AD EVs are known to affect brain disease pathobiology, their biochemical and molecular characterizations remain ill defined. (hide)
EV-METRIC
78% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Brain gray matter
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Filtration
Protein markers
EV: AB1-40/ AB1-42/ ANXA-5
non-EV: None
Proteomics
yes
EV density (g/ml)
1.10-1.15
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Brain gray matter
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
6
Lowest density fraction
0.475 M
Highest density fraction
2.0 M
Total gradient volume, incl. sample (mL)
14
Sample volume (mL)
2
Rotor type
SW 41 Ti
Speed (g)
200000
Duration (min)
1200
Fraction volume (mL)
2
Fraction processing
Centrifugation
Pelleting: volume per fraction
12
Pelleting: speed (g)
100000
Filtration steps
Between 0.22 and 0.45 µm/ 0.2 or 0.22 µm
Characterization: Protein analysis
Protein Concentration Method
BCA
ELISA
Detected EV-associated proteins
AB1-40/ AB1-42/ ANXA-5
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
131
EV concentration
Yes
EM
EM-type
Transmission­-EM
Image type
Close-up
EV230049 2/2 Homo sapiens Brain gray matter (d)(U)C
DG
Filtration
Muraoka S 2020 78%

Study summary

Full title
All authors
Muraoka S, DeLeo AM, Sethi MK, Yukawa-Takamatsu K, Yang Z, Ko J, Hogan JD, Ruan Z, You Y, Wang Y, Medalla M, Ikezu S, Chen M, Xia W, Gorantla S, Gendelman HE, Issadore D, Zaia J, Ikezu T
Journal
Alzheimers Dement
Abstract
Extracellular vesicles (EVs) from human Alzheimer's disease (AD) biospecimens contain amyloid beta ( (show more...)Extracellular vesicles (EVs) from human Alzheimer's disease (AD) biospecimens contain amyloid beta (Aβ) peptide and tau. While AD EVs are known to affect brain disease pathobiology, their biochemical and molecular characterizations remain ill defined. (hide)
EV-METRIC
78% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Brain gray matter
Sample origin
Alzheimer's disease
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Filtration
Protein markers
EV: AB1-40/ AB1-42/ ANXA5
non-EV: None
Proteomics
yes
EV density (g/ml)
1.10-1.15
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Brain gray matter
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
6
Lowest density fraction
0.475 M
Highest density fraction
2.0 M
Total gradient volume, incl. sample (mL)
14
Sample volume (mL)
2
Rotor type
SW 41 Ti
Speed (g)
200000
Duration (min)
1200
Fraction volume (mL)
2
Fraction processing
Centrifugation
Pelleting: volume per fraction
12
Pelleting: speed (g)
100000
Filtration steps
Between 0.22 and 0.45 µm/ 0.2 or 0.22 µm
Characterization: Protein analysis
Protein Concentration Method
BCA
ELISA
Detected EV-associated proteins
AB1-40/ AB1-42/ ANXA5
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
122
EV concentration
Yes
EM
EM-type
Transmission­-EM
Image type
Close-up
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV230049
species
Homo sapiens
sample type
Brain gray matter
condition
Control condition
Alzheimer's disease
separation protocol
dUC/
Density gradient/ Filtration
dUC/
Density gradient/ Filtration
Exp. nr.
1
2
EV-METRIC %
78
78