Search > Results

You searched for: EV230045 (EV-TRACK ID)

Showing 1 - 4 of 4

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV230045 1/4 Homo sapiens hMSC-TERT (d)(U)C
Filtration
L Ramos T 2016 56%

Study summary

Full title
All authors
L Ramos T, Sánchez-Abarca LI, Muntión S, Preciado S, Puig N, López-Ruano G, Hernández-Hernández Á, Redondo A, Ortega R, Rodríguez C, Sánchez-Guijo F, del Cañizo C
Journal
Cell Commun Signal
Abstract
Human mesenchymal stromal cells (hMSC) are multipotent cells with both regenerative and immunomodula (show more...)Human mesenchymal stromal cells (hMSC) are multipotent cells with both regenerative and immunomodulatory activities making them an attractive tool for cellular therapy. In the last few years it has been shown that the beneficial effects of hMSC may be due to paracrine effects and, at least in part, mediated by extracellular vesicles (EV). EV have emerged as important mediators of cell-to-cell communication. Flow cytometry (FCM) is a routine technology used in most clinical laboratories and could be used as a methodology for hMSC-EV characterization. Although several reports have characterized EV by FCM, a specific panel and protocol for hMSC-derived EV is lacking. The main objective of our study was the characterization of hMSC-EV using a standard flow cytometer. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: CD63/ CD81/ CD9/ CD73
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
hMSC-TERT
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
70ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
not reported
Wash: time (min)
70
Wash: Rotor Type
70ti
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 µm
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63/ CD81/ CD73
Flow cytometry
Type of Flow cytometry
FACSCanto II (BD)
Calibration bead size
0.5/ 0.9/ 3
Antibody details provided?
Yes
Detected EV-associated proteins
CD9/ CD81
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
159.7
EV concentration
Yes
EM
EM-type
Transmission­-EM
Image type
Close-up, Wide-field
EV230045 2/4 Homo sapiens hMSC-GFP (d)(U)C
Filtration
L Ramos T 2016 56%

Study summary

Full title
All authors
L Ramos T, Sánchez-Abarca LI, Muntión S, Preciado S, Puig N, López-Ruano G, Hernández-Hernández Á, Redondo A, Ortega R, Rodríguez C, Sánchez-Guijo F, del Cañizo C
Journal
Cell Commun Signal
Abstract
Human mesenchymal stromal cells (hMSC) are multipotent cells with both regenerative and immunomodula (show more...)Human mesenchymal stromal cells (hMSC) are multipotent cells with both regenerative and immunomodulatory activities making them an attractive tool for cellular therapy. In the last few years it has been shown that the beneficial effects of hMSC may be due to paracrine effects and, at least in part, mediated by extracellular vesicles (EV). EV have emerged as important mediators of cell-to-cell communication. Flow cytometry (FCM) is a routine technology used in most clinical laboratories and could be used as a methodology for hMSC-EV characterization. Although several reports have characterized EV by FCM, a specific panel and protocol for hMSC-derived EV is lacking. The main objective of our study was the characterization of hMSC-EV using a standard flow cytometer. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: CD63/ CD81/ CD73
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
hMSC-GFP
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
70ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
not reported
Wash: time (min)
70
Wash: Rotor Type
70ti
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 µm
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63/ CD81/ CD73
Flow cytometry
Type of Flow cytometry
FACSCanto II (BD)
Calibration bead size
0.5/ 0.9/ 3
Antibody details provided?
Yes
Detected EV-associated proteins
CD63/ CD81
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
136.6
EV concentration
Yes
EM
EM-type
Transmission­-EM
Image type
Close-up, Wide-field
EV230045 3/4 Homo sapiens HS-5 (d)(U)C
Filtration
L Ramos T 2016 56%

Study summary

Full title
All authors
L Ramos T, Sánchez-Abarca LI, Muntión S, Preciado S, Puig N, López-Ruano G, Hernández-Hernández Á, Redondo A, Ortega R, Rodríguez C, Sánchez-Guijo F, del Cañizo C
Journal
Cell Commun Signal
Abstract
Human mesenchymal stromal cells (hMSC) are multipotent cells with both regenerative and immunomodula (show more...)Human mesenchymal stromal cells (hMSC) are multipotent cells with both regenerative and immunomodulatory activities making them an attractive tool for cellular therapy. In the last few years it has been shown that the beneficial effects of hMSC may be due to paracrine effects and, at least in part, mediated by extracellular vesicles (EV). EV have emerged as important mediators of cell-to-cell communication. Flow cytometry (FCM) is a routine technology used in most clinical laboratories and could be used as a methodology for hMSC-EV characterization. Although several reports have characterized EV by FCM, a specific panel and protocol for hMSC-derived EV is lacking. The main objective of our study was the characterization of hMSC-EV using a standard flow cytometer. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: CD63/ CD81/ CD73
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HS-5
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
70ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
not reported
Wash: time (min)
70
Wash: Rotor Type
70ti
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 µm
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63/ CD81/ CD73
Flow cytometry
Type of Flow cytometry
FACSCanto II (BD)
Calibration bead size
0.5/ 0.9/ 3
Antibody details provided?
Yes
Detected EV-associated proteins
CD63/ CD81
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
125.6
EV concentration
Yes
EM
EM-type
Transmission­-EM
Image type
Close-up, Wide-field
EV230045 4/4 Homo sapiens K562 (d)(U)C
Filtration
L Ramos T 2016 56%

Study summary

Full title
All authors
L Ramos T, Sánchez-Abarca LI, Muntión S, Preciado S, Puig N, López-Ruano G, Hernández-Hernández Á, Redondo A, Ortega R, Rodríguez C, Sánchez-Guijo F, del Cañizo C
Journal
Cell Commun Signal
Abstract
Human mesenchymal stromal cells (hMSC) are multipotent cells with both regenerative and immunomodula (show more...)Human mesenchymal stromal cells (hMSC) are multipotent cells with both regenerative and immunomodulatory activities making them an attractive tool for cellular therapy. In the last few years it has been shown that the beneficial effects of hMSC may be due to paracrine effects and, at least in part, mediated by extracellular vesicles (EV). EV have emerged as important mediators of cell-to-cell communication. Flow cytometry (FCM) is a routine technology used in most clinical laboratories and could be used as a methodology for hMSC-EV characterization. Although several reports have characterized EV by FCM, a specific panel and protocol for hMSC-derived EV is lacking. The main objective of our study was the characterization of hMSC-EV using a standard flow cytometer. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: CD63/ CD81/ CD73
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
K562
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
70ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
not reported
Wash: time (min)
70
Wash: Rotor Type
70ti
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 µm
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63/ CD81/ CD73
Flow cytometry
Type of Flow cytometry
FACSCanto II (BD)
Calibration bead size
0.5/ 0.9/ 3
Antibody details provided?
Yes
Detected EV-associated proteins
CD63/ CD81
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
122
EV concentration
Yes
EM
EM-type
Transmission­-EM
Image type
Close-up, Wide-field
1 - 4 of 4
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV230045
species
Homo sapiens
sample type
Cell culture
cell type
hMSC-TERT
hMSC-GFP
HS-5
K562
condition
Control condition
Control condition
Control condition
Control condition
separation protocol
dUC/ Filtration
dUC/ Filtration
dUC/ Filtration
dUC/ Filtration
Exp. nr.
1
2
3
4
EV-METRIC %
56
56
56
56