Search > Results

You searched for: EV230033 (EV-TRACK ID)

Showing 1 - 9 of 9

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV230033 4/9 Homo sapiens HT29 (d)(U)C
UF
SEC (non-commercial)
Beaumont JEJ 2024 75%

Study summary

Full title
All authors
Beaumont JEJ, Barbeau LMO, Ju J, Savelkouls KG, Bouwman FG, Zonneveld MI, Bronckaers A, Kampen KR, Keulers TGH, Rouschop KMA
Journal
J Extracell Vesicles
Abstract
Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells tha (show more...)Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells that induce therapy resistance and has profound effects on cellular metabolism. As such, hypoxia is an important contributor to cancer progression and is associated with a poor prognosis. Metabolic alterations in cells within the tumour microenvironment support tumour growth via, amongst others, the suppression of immune reactions and the induction of angiogenesis. Recently, extracellular vesicles (EV) have emerged as important mediators of intercellular communication in support of cancer progression. Previously, we demonstrated the pro-angiogenic properties of hypoxic cancer cell derived EV. In this study, we investigate how (hypoxic) cancer cell derived EV mediate their effects. We demonstrate that cancer derived EV regulate cellular metabolism and protein synthesis in acceptor cells through increased activation of mTOR and AMPKα. Using metabolic tracer experiments, we demonstrate that EV stimulate glucose uptake in endothelial cells to fuel amino acid synthesis and stimulate amino acid uptake to increase protein synthesis. Despite alterations in cargo, we show that the effect of cancer derived EV on recipient cells is primarily determined by the EV producing cancer cell type rather than its oxygenation status. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
Size-exclusion chromatography (non-commercial)
Protein markers
EV: CD63/ CD81/ Syntenin-1/ TSG101
non-EV: GM130
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HT29
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
16
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
CD63/ CD81/ Syntenin-1
Not detected EV-associated proteins
TSG101
Not detected contaminants
GM130
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
138.62
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
EV230033 5/9 Homo sapiens HT29 (d)(U)C
UF
SEC (non-commercial)
Beaumont JEJ 2024 75%

Study summary

Full title
All authors
Beaumont JEJ, Barbeau LMO, Ju J, Savelkouls KG, Bouwman FG, Zonneveld MI, Bronckaers A, Kampen KR, Keulers TGH, Rouschop KMA
Journal
J Extracell Vesicles
Abstract
Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells tha (show more...)Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells that induce therapy resistance and has profound effects on cellular metabolism. As such, hypoxia is an important contributor to cancer progression and is associated with a poor prognosis. Metabolic alterations in cells within the tumour microenvironment support tumour growth via, amongst others, the suppression of immune reactions and the induction of angiogenesis. Recently, extracellular vesicles (EV) have emerged as important mediators of intercellular communication in support of cancer progression. Previously, we demonstrated the pro-angiogenic properties of hypoxic cancer cell derived EV. In this study, we investigate how (hypoxic) cancer cell derived EV mediate their effects. We demonstrate that cancer derived EV regulate cellular metabolism and protein synthesis in acceptor cells through increased activation of mTOR and AMPKα. Using metabolic tracer experiments, we demonstrate that EV stimulate glucose uptake in endothelial cells to fuel amino acid synthesis and stimulate amino acid uptake to increase protein synthesis. Despite alterations in cargo, we show that the effect of cancer derived EV on recipient cells is primarily determined by the EV producing cancer cell type rather than its oxygenation status. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Hypoxia (0.2%O2)
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
Size-exclusion chromatography (non-commercial)
Protein markers
EV: CD63/ CD81/ Syntenin-1/ TSG101
non-EV: GM130
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HT29
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
16
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
CD63/ CD81/ Syntenin-1
Not detected EV-associated proteins
TSG101
Not detected contaminants
GM130
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
146.34
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
EV230033 6/9 Homo sapiens HT29 (d)(U)C
UF
SEC (non-commercial)
Beaumont JEJ 2024 75%

Study summary

Full title
All authors
Beaumont JEJ, Barbeau LMO, Ju J, Savelkouls KG, Bouwman FG, Zonneveld MI, Bronckaers A, Kampen KR, Keulers TGH, Rouschop KMA
Journal
J Extracell Vesicles
Abstract
Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells tha (show more...)Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells that induce therapy resistance and has profound effects on cellular metabolism. As such, hypoxia is an important contributor to cancer progression and is associated with a poor prognosis. Metabolic alterations in cells within the tumour microenvironment support tumour growth via, amongst others, the suppression of immune reactions and the induction of angiogenesis. Recently, extracellular vesicles (EV) have emerged as important mediators of intercellular communication in support of cancer progression. Previously, we demonstrated the pro-angiogenic properties of hypoxic cancer cell derived EV. In this study, we investigate how (hypoxic) cancer cell derived EV mediate their effects. We demonstrate that cancer derived EV regulate cellular metabolism and protein synthesis in acceptor cells through increased activation of mTOR and AMPKα. Using metabolic tracer experiments, we demonstrate that EV stimulate glucose uptake in endothelial cells to fuel amino acid synthesis and stimulate amino acid uptake to increase protein synthesis. Despite alterations in cargo, we show that the effect of cancer derived EV on recipient cells is primarily determined by the EV producing cancer cell type rather than its oxygenation status. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Hypoxia (<0.02%O2)
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
Size-exclusion chromatography (non-commercial)
Protein markers
EV: CD63/ CD81/ Syntenin-1/ TSG101
non-EV: GM130
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HT29
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
16
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
CD63/ CD81/ Syntenin-1
Not detected EV-associated proteins
TSG101
Not detected contaminants
GM130
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
145.58
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
EV230033 1/9 Homo sapiens MDA-MB-231 (d)(U)C
UF
SEC (non-commercial)
Beaumont JEJ 2024 50%

Study summary

Full title
All authors
Beaumont JEJ, Barbeau LMO, Ju J, Savelkouls KG, Bouwman FG, Zonneveld MI, Bronckaers A, Kampen KR, Keulers TGH, Rouschop KMA
Journal
J Extracell Vesicles
Abstract
Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells tha (show more...)Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells that induce therapy resistance and has profound effects on cellular metabolism. As such, hypoxia is an important contributor to cancer progression and is associated with a poor prognosis. Metabolic alterations in cells within the tumour microenvironment support tumour growth via, amongst others, the suppression of immune reactions and the induction of angiogenesis. Recently, extracellular vesicles (EV) have emerged as important mediators of intercellular communication in support of cancer progression. Previously, we demonstrated the pro-angiogenic properties of hypoxic cancer cell derived EV. In this study, we investigate how (hypoxic) cancer cell derived EV mediate their effects. We demonstrate that cancer derived EV regulate cellular metabolism and protein synthesis in acceptor cells through increased activation of mTOR and AMPKα. Using metabolic tracer experiments, we demonstrate that EV stimulate glucose uptake in endothelial cells to fuel amino acid synthesis and stimulate amino acid uptake to increase protein synthesis. Despite alterations in cargo, we show that the effect of cancer derived EV on recipient cells is primarily determined by the EV producing cancer cell type rather than its oxygenation status. (hide)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
Size-exclusion chromatography (non-commercial)
Protein markers
EV: CD63/ CD81/ TSG101/ Syntenin-1
non-EV: GM130
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-231
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
16
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
CD63/ CD81
Not detected EV-associated proteins
TSG101/ Syntenin-1
Not detected contaminants
GM130
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
160.84
EV concentration
Yes
EV230033 2/9 Homo sapiens MDA-MB-231 (d)(U)C
UF
SEC (non-commercial)
Beaumont JEJ 2024 50%

Study summary

Full title
All authors
Beaumont JEJ, Barbeau LMO, Ju J, Savelkouls KG, Bouwman FG, Zonneveld MI, Bronckaers A, Kampen KR, Keulers TGH, Rouschop KMA
Journal
J Extracell Vesicles
Abstract
Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells tha (show more...)Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells that induce therapy resistance and has profound effects on cellular metabolism. As such, hypoxia is an important contributor to cancer progression and is associated with a poor prognosis. Metabolic alterations in cells within the tumour microenvironment support tumour growth via, amongst others, the suppression of immune reactions and the induction of angiogenesis. Recently, extracellular vesicles (EV) have emerged as important mediators of intercellular communication in support of cancer progression. Previously, we demonstrated the pro-angiogenic properties of hypoxic cancer cell derived EV. In this study, we investigate how (hypoxic) cancer cell derived EV mediate their effects. We demonstrate that cancer derived EV regulate cellular metabolism and protein synthesis in acceptor cells through increased activation of mTOR and AMPKα. Using metabolic tracer experiments, we demonstrate that EV stimulate glucose uptake in endothelial cells to fuel amino acid synthesis and stimulate amino acid uptake to increase protein synthesis. Despite alterations in cargo, we show that the effect of cancer derived EV on recipient cells is primarily determined by the EV producing cancer cell type rather than its oxygenation status. (hide)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Hypoxia (0.2%O2)
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
Size-exclusion chromatography (non-commercial)
Protein markers
EV: CD63/ CD81/ TSG101/ Syntenin-1
non-EV: GM130
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-231
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
16
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
CD63/ CD81
Not detected EV-associated proteins
TSG101/ Syntenin-1
Not detected contaminants
GM130
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
156.08
EV concentration
Yes
EV230033 3/9 Homo sapiens MDA-MB-231 (d)(U)C
UF
SEC (non-commercial)
Beaumont JEJ 2024 50%

Study summary

Full title
All authors
Beaumont JEJ, Barbeau LMO, Ju J, Savelkouls KG, Bouwman FG, Zonneveld MI, Bronckaers A, Kampen KR, Keulers TGH, Rouschop KMA
Journal
J Extracell Vesicles
Abstract
Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells tha (show more...)Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells that induce therapy resistance and has profound effects on cellular metabolism. As such, hypoxia is an important contributor to cancer progression and is associated with a poor prognosis. Metabolic alterations in cells within the tumour microenvironment support tumour growth via, amongst others, the suppression of immune reactions and the induction of angiogenesis. Recently, extracellular vesicles (EV) have emerged as important mediators of intercellular communication in support of cancer progression. Previously, we demonstrated the pro-angiogenic properties of hypoxic cancer cell derived EV. In this study, we investigate how (hypoxic) cancer cell derived EV mediate their effects. We demonstrate that cancer derived EV regulate cellular metabolism and protein synthesis in acceptor cells through increased activation of mTOR and AMPKα. Using metabolic tracer experiments, we demonstrate that EV stimulate glucose uptake in endothelial cells to fuel amino acid synthesis and stimulate amino acid uptake to increase protein synthesis. Despite alterations in cargo, we show that the effect of cancer derived EV on recipient cells is primarily determined by the EV producing cancer cell type rather than its oxygenation status. (hide)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Hypoxia (<0.02%O2)
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
Size-exclusion chromatography (non-commercial)
Protein markers
EV: CD63/ CD81/ TSG101/ Syntenin-1
non-EV: GM130
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-231
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
16
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
CD63/ CD81
Not detected EV-associated proteins
TSG101/ Syntenin-1
Not detected contaminants
GM130
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
157.16
EV concentration
Yes
EV230033 7/9 Homo sapiens U87 (d)(U)C
UF
SEC (non-commercial)
Beaumont JEJ 2024 50%

Study summary

Full title
All authors
Beaumont JEJ, Barbeau LMO, Ju J, Savelkouls KG, Bouwman FG, Zonneveld MI, Bronckaers A, Kampen KR, Keulers TGH, Rouschop KMA
Journal
J Extracell Vesicles
Abstract
Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells tha (show more...)Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells that induce therapy resistance and has profound effects on cellular metabolism. As such, hypoxia is an important contributor to cancer progression and is associated with a poor prognosis. Metabolic alterations in cells within the tumour microenvironment support tumour growth via, amongst others, the suppression of immune reactions and the induction of angiogenesis. Recently, extracellular vesicles (EV) have emerged as important mediators of intercellular communication in support of cancer progression. Previously, we demonstrated the pro-angiogenic properties of hypoxic cancer cell derived EV. In this study, we investigate how (hypoxic) cancer cell derived EV mediate their effects. We demonstrate that cancer derived EV regulate cellular metabolism and protein synthesis in acceptor cells through increased activation of mTOR and AMPKα. Using metabolic tracer experiments, we demonstrate that EV stimulate glucose uptake in endothelial cells to fuel amino acid synthesis and stimulate amino acid uptake to increase protein synthesis. Despite alterations in cargo, we show that the effect of cancer derived EV on recipient cells is primarily determined by the EV producing cancer cell type rather than its oxygenation status. (hide)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
Size-exclusion chromatography (non-commercial)
Protein markers
EV: CD63/ CD81/ Syntenin-1/ TSG101
non-EV: GM130
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
U87
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
16
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
CD63/ CD81/ Syntenin-1
Not detected EV-associated proteins
TSG101
Not detected contaminants
GM130
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
160.56
EV concentration
Yes
EV230033 8/9 Homo sapiens U87 (d)(U)C
UF
SEC (non-commercial)
Beaumont JEJ 2024 50%

Study summary

Full title
All authors
Beaumont JEJ, Barbeau LMO, Ju J, Savelkouls KG, Bouwman FG, Zonneveld MI, Bronckaers A, Kampen KR, Keulers TGH, Rouschop KMA
Journal
J Extracell Vesicles
Abstract
Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells tha (show more...)Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells that induce therapy resistance and has profound effects on cellular metabolism. As such, hypoxia is an important contributor to cancer progression and is associated with a poor prognosis. Metabolic alterations in cells within the tumour microenvironment support tumour growth via, amongst others, the suppression of immune reactions and the induction of angiogenesis. Recently, extracellular vesicles (EV) have emerged as important mediators of intercellular communication in support of cancer progression. Previously, we demonstrated the pro-angiogenic properties of hypoxic cancer cell derived EV. In this study, we investigate how (hypoxic) cancer cell derived EV mediate their effects. We demonstrate that cancer derived EV regulate cellular metabolism and protein synthesis in acceptor cells through increased activation of mTOR and AMPKα. Using metabolic tracer experiments, we demonstrate that EV stimulate glucose uptake in endothelial cells to fuel amino acid synthesis and stimulate amino acid uptake to increase protein synthesis. Despite alterations in cargo, we show that the effect of cancer derived EV on recipient cells is primarily determined by the EV producing cancer cell type rather than its oxygenation status. (hide)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Hypoxia (0.2%O2)
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
Size-exclusion chromatography (non-commercial)
Protein markers
EV: CD63/ CD81/ Syntenin-1/ TSG101
non-EV: GM130
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
U87
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
16
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
CD63/ CD81/ Syntenin-1
Not detected EV-associated proteins
TSG101
Not detected contaminants
GM130
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
167.54
EV concentration
Yes
EV230033 9/9 Homo sapiens U87 (d)(U)C
UF
SEC (non-commercial)
Beaumont JEJ 2024 50%

Study summary

Full title
All authors
Beaumont JEJ, Barbeau LMO, Ju J, Savelkouls KG, Bouwman FG, Zonneveld MI, Bronckaers A, Kampen KR, Keulers TGH, Rouschop KMA
Journal
J Extracell Vesicles
Abstract
Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells tha (show more...)Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells that induce therapy resistance and has profound effects on cellular metabolism. As such, hypoxia is an important contributor to cancer progression and is associated with a poor prognosis. Metabolic alterations in cells within the tumour microenvironment support tumour growth via, amongst others, the suppression of immune reactions and the induction of angiogenesis. Recently, extracellular vesicles (EV) have emerged as important mediators of intercellular communication in support of cancer progression. Previously, we demonstrated the pro-angiogenic properties of hypoxic cancer cell derived EV. In this study, we investigate how (hypoxic) cancer cell derived EV mediate their effects. We demonstrate that cancer derived EV regulate cellular metabolism and protein synthesis in acceptor cells through increased activation of mTOR and AMPKα. Using metabolic tracer experiments, we demonstrate that EV stimulate glucose uptake in endothelial cells to fuel amino acid synthesis and stimulate amino acid uptake to increase protein synthesis. Despite alterations in cargo, we show that the effect of cancer derived EV on recipient cells is primarily determined by the EV producing cancer cell type rather than its oxygenation status. (hide)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Hypoxia (<0.02%O2)
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
Size-exclusion chromatography (non-commercial)
Protein markers
EV: CD63/ CD81/ Syntenin-1/ TSG101
non-EV: GM130
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
U87
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
16
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
CD63/ CD81/ Syntenin-1
Not detected EV-associated proteins
TSG101
Not detected contaminants
GM130
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
164
EV concentration
Yes
1 - 9 of 9
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV230033
species
Homo
sapiens
sample type
Cell
culture
cell type
HT29
HT29
HT29
MDA-MB-231
MDA-MB-231
MDA-MB-231
U87
U87
U87
condition
Control
condition
Hypoxia
(0.2%O2)
Hypoxia
(<0.02%O2)
Control
condition
Hypoxia
(0.2%O2)
Hypoxia
(<0.02%O2)
Control
condition
Hypoxia
(0.2%O2)
Hypoxia
(<0.02%O2)
separation protocol
dUC/
Ultrafiltration/
Size-exclusion
chromatography
(non-commercial)
dUC/
Ultrafiltration/
Size-exclusion
chromatography
(non-commercial)
dUC/
Ultrafiltration/
Size-exclusion
chromatography
(non-commercial)
dUC/
Ultrafiltration/
Size-exclusion
chromatography
(non-commercial)
dUC/
Ultrafiltration/
Size-exclusion
chromatography
(non-commercial)
dUC/
Ultrafiltration/
Size-exclusion
chromatography
(non-commercial)
dUC/
Ultrafiltration/
Size-exclusion
chromatography
(non-commercial)
dUC/
Ultrafiltration/
Size-exclusion
chromatography
(non-commercial)
dUC/
Ultrafiltration/
Size-exclusion
chromatography
(non-commercial)
Exp. nr.
4
5
6
1
2
3
7
8
9
EV-METRIC %
75
75
75
50
50
50
50
50
50