Search > Results

You searched for: EV220413 (EV-TRACK ID)

Showing 1 - 6 of 6

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV220413 1/6 Homo sapiens SKVO3 (d)(U)C
Filtration
Carmen Alarcón-Veleiro 2023 44%

Study summary

Full title
All authors
Carmen Alarcón-Veleiro, Rocío Mato-Basalo, Sergio Lucio-Gallego, Andrea Vidal-Pampín, María Quindós-Varela, Thamer Al-Qatarneh, Germán Berrecoso, Ángel Vizoso-Vázquez, María C. Arufe and Juan Fafián-Labora
Journal
antioxidants
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for E (show more...)Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for EOC involves surgical debulking of the tumors followed by a combination of chemotherapy. While most patients achieve complete remission, many EOCs will recur and develop chemo-resistance. The cancer cells can adapt to several stress stimuli, becoming resistant. Because of this, new ways to fight resistant cells during the disease are being studied. However, the clinical outcomes remain unsatisfactory. Recently, ferroptosis, a novel form of regulated cell death trigged by the accumulation of iron and toxic species of lipid metabolism in cells, has emerged as a promising anti-tumor strategy for EOC treatment. This process has a high potential to become a complementary treatment to the current anti-tumor strategies to eliminate resistant cells and to avoid relapse. Cancer cells, like other cells in the body, release small extracellular vesicles (sEV) that allow the transport of substances from the cells themselves to communicate with their environment. To achieve this, we analyzed the capacity of epithelial ovarian cancer cells (OVCA), treated with ferroptosis inducers, to generate sEV, assessing their size and number, and study the transmission of ferroptosis by sEV. Our results reveal that OVCA cells treated with ferroptotic inducers can modify intercellular communication by sEV, inducing cell death in recipient cells. Furthermore, these receptor cells are able to generate a greater amount of sEV, contributing to a much higher ferroptosis paracrine transmission. Thus, we discovered the importance of the sEV in the communication between cells in OVCA, focusing on the ferroptosis process. These findings could be the beginning form to study the molecular mechanism ferroptosis transmission through sEV. (hide)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: CD63
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SKVO3
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
100
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
P70AT
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
15
Wash: time (min)
120
Wash: Rotor Type
P70AT
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 ?m
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
125
EV concentration
Yes
EV220413 2/6 Homo sapiens SKVO3 (d)(U)C
Filtration
Carmen Alarcón-Veleiro 2023 14%

Study summary

Full title
All authors
Carmen Alarcón-Veleiro, Rocío Mato-Basalo, Sergio Lucio-Gallego, Andrea Vidal-Pampín, María Quindós-Varela, Thamer Al-Qatarneh, Germán Berrecoso, Ángel Vizoso-Vázquez, María C. Arufe and Juan Fafián-Labora
Journal
antioxidants
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for E (show more...)Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for EOC involves surgical debulking of the tumors followed by a combination of chemotherapy. While most patients achieve complete remission, many EOCs will recur and develop chemo-resistance. The cancer cells can adapt to several stress stimuli, becoming resistant. Because of this, new ways to fight resistant cells during the disease are being studied. However, the clinical outcomes remain unsatisfactory. Recently, ferroptosis, a novel form of regulated cell death trigged by the accumulation of iron and toxic species of lipid metabolism in cells, has emerged as a promising anti-tumor strategy for EOC treatment. This process has a high potential to become a complementary treatment to the current anti-tumor strategies to eliminate resistant cells and to avoid relapse. Cancer cells, like other cells in the body, release small extracellular vesicles (sEV) that allow the transport of substances from the cells themselves to communicate with their environment. To achieve this, we analyzed the capacity of epithelial ovarian cancer cells (OVCA), treated with ferroptosis inducers, to generate sEV, assessing their size and number, and study the transmission of ferroptosis by sEV. Our results reveal that OVCA cells treated with ferroptotic inducers can modify intercellular communication by sEV, inducing cell death in recipient cells. Furthermore, these receptor cells are able to generate a greater amount of sEV, contributing to a much higher ferroptosis paracrine transmission. Thus, we discovered the importance of the sEV in the communication between cells in OVCA, focusing on the ferroptosis process. These findings could be the beginning form to study the molecular mechanism ferroptosis transmission through sEV. (hide)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
RSL3 treated
Focus vesicles
small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SKVO3
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
100
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
P70AT
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
15
Wash: time (min)
120
Wash: Rotor Type
P70AT
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 ?m
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
125
EV concentration
Yes
EV220413 3/6 Homo sapiens SKVO3 (d)(U)C
Filtration
Carmen Alarcón-Veleiro 2023 14%

Study summary

Full title
All authors
Carmen Alarcón-Veleiro, Rocío Mato-Basalo, Sergio Lucio-Gallego, Andrea Vidal-Pampín, María Quindós-Varela, Thamer Al-Qatarneh, Germán Berrecoso, Ángel Vizoso-Vázquez, María C. Arufe and Juan Fafián-Labora
Journal
antioxidants
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for E (show more...)Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for EOC involves surgical debulking of the tumors followed by a combination of chemotherapy. While most patients achieve complete remission, many EOCs will recur and develop chemo-resistance. The cancer cells can adapt to several stress stimuli, becoming resistant. Because of this, new ways to fight resistant cells during the disease are being studied. However, the clinical outcomes remain unsatisfactory. Recently, ferroptosis, a novel form of regulated cell death trigged by the accumulation of iron and toxic species of lipid metabolism in cells, has emerged as a promising anti-tumor strategy for EOC treatment. This process has a high potential to become a complementary treatment to the current anti-tumor strategies to eliminate resistant cells and to avoid relapse. Cancer cells, like other cells in the body, release small extracellular vesicles (sEV) that allow the transport of substances from the cells themselves to communicate with their environment. To achieve this, we analyzed the capacity of epithelial ovarian cancer cells (OVCA), treated with ferroptosis inducers, to generate sEV, assessing their size and number, and study the transmission of ferroptosis by sEV. Our results reveal that OVCA cells treated with ferroptotic inducers can modify intercellular communication by sEV, inducing cell death in recipient cells. Furthermore, these receptor cells are able to generate a greater amount of sEV, contributing to a much higher ferroptosis paracrine transmission. Thus, we discovered the importance of the sEV in the communication between cells in OVCA, focusing on the ferroptosis process. These findings could be the beginning form to study the molecular mechanism ferroptosis transmission through sEV. (hide)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Erastin treated
Focus vesicles
small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SKVO3
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
100
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
P70AT
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
15
Wash: time (min)
120
Wash: Rotor Type
P70AT
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 ?m
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
125
EV concentration
Yes
EV220413 4/6 Homo sapiens A2780 (d)(U)C
Filtration
Carmen Alarcón-Veleiro 2023 14%

Study summary

Full title
All authors
Carmen Alarcón-Veleiro, Rocío Mato-Basalo, Sergio Lucio-Gallego, Andrea Vidal-Pampín, María Quindós-Varela, Thamer Al-Qatarneh, Germán Berrecoso, Ángel Vizoso-Vázquez, María C. Arufe and Juan Fafián-Labora
Journal
antioxidants
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for E (show more...)Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for EOC involves surgical debulking of the tumors followed by a combination of chemotherapy. While most patients achieve complete remission, many EOCs will recur and develop chemo-resistance. The cancer cells can adapt to several stress stimuli, becoming resistant. Because of this, new ways to fight resistant cells during the disease are being studied. However, the clinical outcomes remain unsatisfactory. Recently, ferroptosis, a novel form of regulated cell death trigged by the accumulation of iron and toxic species of lipid metabolism in cells, has emerged as a promising anti-tumor strategy for EOC treatment. This process has a high potential to become a complementary treatment to the current anti-tumor strategies to eliminate resistant cells and to avoid relapse. Cancer cells, like other cells in the body, release small extracellular vesicles (sEV) that allow the transport of substances from the cells themselves to communicate with their environment. To achieve this, we analyzed the capacity of epithelial ovarian cancer cells (OVCA), treated with ferroptosis inducers, to generate sEV, assessing their size and number, and study the transmission of ferroptosis by sEV. Our results reveal that OVCA cells treated with ferroptotic inducers can modify intercellular communication by sEV, inducing cell death in recipient cells. Furthermore, these receptor cells are able to generate a greater amount of sEV, contributing to a much higher ferroptosis paracrine transmission. Thus, we discovered the importance of the sEV in the communication between cells in OVCA, focusing on the ferroptosis process. These findings could be the beginning form to study the molecular mechanism ferroptosis transmission through sEV. (hide)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
A2780
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
100
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
P70AT
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
15
Wash: time (min)
120
Wash: Rotor Type
P70AT
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 ?m
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220413 5/6 Homo sapiens A2780 (d)(U)C
Filtration
Carmen Alarcón-Veleiro 2023 14%

Study summary

Full title
All authors
Carmen Alarcón-Veleiro, Rocío Mato-Basalo, Sergio Lucio-Gallego, Andrea Vidal-Pampín, María Quindós-Varela, Thamer Al-Qatarneh, Germán Berrecoso, Ángel Vizoso-Vázquez, María C. Arufe and Juan Fafián-Labora
Journal
antioxidants
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for E (show more...)Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for EOC involves surgical debulking of the tumors followed by a combination of chemotherapy. While most patients achieve complete remission, many EOCs will recur and develop chemo-resistance. The cancer cells can adapt to several stress stimuli, becoming resistant. Because of this, new ways to fight resistant cells during the disease are being studied. However, the clinical outcomes remain unsatisfactory. Recently, ferroptosis, a novel form of regulated cell death trigged by the accumulation of iron and toxic species of lipid metabolism in cells, has emerged as a promising anti-tumor strategy for EOC treatment. This process has a high potential to become a complementary treatment to the current anti-tumor strategies to eliminate resistant cells and to avoid relapse. Cancer cells, like other cells in the body, release small extracellular vesicles (sEV) that allow the transport of substances from the cells themselves to communicate with their environment. To achieve this, we analyzed the capacity of epithelial ovarian cancer cells (OVCA), treated with ferroptosis inducers, to generate sEV, assessing their size and number, and study the transmission of ferroptosis by sEV. Our results reveal that OVCA cells treated with ferroptotic inducers can modify intercellular communication by sEV, inducing cell death in recipient cells. Furthermore, these receptor cells are able to generate a greater amount of sEV, contributing to a much higher ferroptosis paracrine transmission. Thus, we discovered the importance of the sEV in the communication between cells in OVCA, focusing on the ferroptosis process. These findings could be the beginning form to study the molecular mechanism ferroptosis transmission through sEV. (hide)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
RSL3 treated
Focus vesicles
small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
A2780
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
100
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
P70AT
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
15
Wash: time (min)
120
Wash: Rotor Type
P70AT
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 ?m
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220413 6/6 Homo sapiens A2780 (d)(U)C
Filtration
Carmen Alarcón-Veleiro 2023 14%

Study summary

Full title
All authors
Carmen Alarcón-Veleiro, Rocío Mato-Basalo, Sergio Lucio-Gallego, Andrea Vidal-Pampín, María Quindós-Varela, Thamer Al-Qatarneh, Germán Berrecoso, Ángel Vizoso-Vázquez, María C. Arufe and Juan Fafián-Labora
Journal
antioxidants
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for E (show more...)Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for EOC involves surgical debulking of the tumors followed by a combination of chemotherapy. While most patients achieve complete remission, many EOCs will recur and develop chemo-resistance. The cancer cells can adapt to several stress stimuli, becoming resistant. Because of this, new ways to fight resistant cells during the disease are being studied. However, the clinical outcomes remain unsatisfactory. Recently, ferroptosis, a novel form of regulated cell death trigged by the accumulation of iron and toxic species of lipid metabolism in cells, has emerged as a promising anti-tumor strategy for EOC treatment. This process has a high potential to become a complementary treatment to the current anti-tumor strategies to eliminate resistant cells and to avoid relapse. Cancer cells, like other cells in the body, release small extracellular vesicles (sEV) that allow the transport of substances from the cells themselves to communicate with their environment. To achieve this, we analyzed the capacity of epithelial ovarian cancer cells (OVCA), treated with ferroptosis inducers, to generate sEV, assessing their size and number, and study the transmission of ferroptosis by sEV. Our results reveal that OVCA cells treated with ferroptotic inducers can modify intercellular communication by sEV, inducing cell death in recipient cells. Furthermore, these receptor cells are able to generate a greater amount of sEV, contributing to a much higher ferroptosis paracrine transmission. Thus, we discovered the importance of the sEV in the communication between cells in OVCA, focusing on the ferroptosis process. These findings could be the beginning form to study the molecular mechanism ferroptosis transmission through sEV. (hide)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Erastin treated
Focus vesicles
small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
A2780
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
100
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
P70AT
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
15
Wash: time (min)
120
Wash: Rotor Type
P70AT
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 ?m
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
1 - 6 of 6
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV220413
species
Homo
sapiens
sample type
Cell
culture
cell type
SKVO3
SKVO3
SKVO3
A2780
A2780
A2780
condition
Control
condition
RSL3
treated
Erastin
treated
Control
condition
RSL3
treated
Erastin
treated
separation protocol
dUC/
Filtration
dUC/
Filtration
dUC/
Filtration
dUC/
Filtration
dUC/
Filtration
dUC/
Filtration
Exp. nr.
1
2
3
4
5
6
EV-METRIC %
44
14
14
14
14
14