Search > Results

You searched for: EV220208 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV220208 1/2 Homo sapiens HUVEC Filtration
dUC
Hosseinkhani B 2018 67%

Study summary

Full title
All authors
Hosseinkhani B, Kuypers S, van den Akker NMS, Molin DGM, Michiels L
Journal
Front Immunol
Abstract
Extracellular vesicles (EV) mediated intercellular communication between monocytes and endothelial c (show more...)Extracellular vesicles (EV) mediated intercellular communication between monocytes and endothelial cells (EC) might play a major role in vascular inflammation and atherosclerotic plaque formation during cardiovascular diseases (CVD). While critical involvement of small (exosomes) and large EV (microvesicles) in CVD has recently been appreciated, the pro- and/or anti-inflammatory impact of a bulk EV (exosomes + microvesicles) on vascular cell function as well as their inflammatory capacity are poorly defined. This study aims to unravel the immunomodulatory content of EV bulk derived from control (uEV) and TNF-α induced inflamed endothelial cells (tEV) and to define their capacity to affect the inflammatory status of recipients monocytes (THP-1) and endothelial cells (HUVEC) . Here, we show that EV derived from inflamed vascular EC were readily taken up by THP-1 and HUVEC. Human inflammation antibody array together with ELISA revealed that tEV contain a pro-inflammatory profile with chemotactic mediators, including intercellular adhesion molecule (ICAM)-1, CCL-2, IL-6, IL-8, CXCL-10, CCL-5, and TNF-α as compared to uEV. In addition, EV may mediate a selective transfer of functional inflammatory mediators to their target cells and modulate them toward either pro-inflammatory (HUVEC) or anti/pro-inflammatory (THP-1) mode. Accordingly, the expression of pro-inflammatory markers (IL-6, IL-8, and ICAM-1) in tEV-treated HUVEC was increased. In the case of THP-1, EC-EV do induce a mixed of pro- and anti-inflammatory response as indicated by the elevated expression of ICAM-1, CCL-4, CCL-5, and CXCL-10 proteins. At the functional level, EC-EV mediated inflammation and promoted the adhesion and migration of THP-1. Taken together, our findings proved that the EV released from inflamed EC were enriched with a cocktail of inflammatory markers, chemokines, and cytokines which are able to establish a targeted cross-talk between EC and monocytes and reprogramming them toward a pro- or anti-inflammatory phenotypes. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Filtration
dUC
Protein markers
EV: CD63/ ICAM-1/ IL-6, IL-8, ICAM-1, CCL-2/ CD9/ IL-8/ TIMP2/ ICAM-1/ IL6-R/ CXCL10/ CCL-2/ PDGF-BB
non-EV: GM130
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HUVEC
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
110000
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
dUC
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9/ CD63/ ICAM-1/ ?-Actin
Not detected contaminants
GM130
ELISA
Detected EV-associated proteins
IL-6, IL-8, ICAM-1, CCL-2
Other 1
ELISA
Detected EV-associated proteins
IL-8/ TIMP2/ ICAM-1/ IL6-R/ CXCL10/ CCL-2/ PDGF-BB
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV220208 2/2 Homo sapiens HUVEC Filtration
dUC
Hosseinkhani B 2018 56%

Study summary

Full title
All authors
Hosseinkhani B, Kuypers S, van den Akker NMS, Molin DGM, Michiels L
Journal
Front Immunol
Abstract
Extracellular vesicles (EV) mediated intercellular communication between monocytes and endothelial c (show more...)Extracellular vesicles (EV) mediated intercellular communication between monocytes and endothelial cells (EC) might play a major role in vascular inflammation and atherosclerotic plaque formation during cardiovascular diseases (CVD). While critical involvement of small (exosomes) and large EV (microvesicles) in CVD has recently been appreciated, the pro- and/or anti-inflammatory impact of a bulk EV (exosomes + microvesicles) on vascular cell function as well as their inflammatory capacity are poorly defined. This study aims to unravel the immunomodulatory content of EV bulk derived from control (uEV) and TNF-α induced inflamed endothelial cells (tEV) and to define their capacity to affect the inflammatory status of recipients monocytes (THP-1) and endothelial cells (HUVEC) . Here, we show that EV derived from inflamed vascular EC were readily taken up by THP-1 and HUVEC. Human inflammation antibody array together with ELISA revealed that tEV contain a pro-inflammatory profile with chemotactic mediators, including intercellular adhesion molecule (ICAM)-1, CCL-2, IL-6, IL-8, CXCL-10, CCL-5, and TNF-α as compared to uEV. In addition, EV may mediate a selective transfer of functional inflammatory mediators to their target cells and modulate them toward either pro-inflammatory (HUVEC) or anti/pro-inflammatory (THP-1) mode. Accordingly, the expression of pro-inflammatory markers (IL-6, IL-8, and ICAM-1) in tEV-treated HUVEC was increased. In the case of THP-1, EC-EV do induce a mixed of pro- and anti-inflammatory response as indicated by the elevated expression of ICAM-1, CCL-4, CCL-5, and CXCL-10 proteins. At the functional level, EC-EV mediated inflammation and promoted the adhesion and migration of THP-1. Taken together, our findings proved that the EV released from inflamed EC were enriched with a cocktail of inflammatory markers, chemokines, and cytokines which are able to establish a targeted cross-talk between EC and monocytes and reprogramming them toward a pro- or anti-inflammatory phenotypes. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
TNF-alpha
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Filtration
dUC
Protein markers
EV: CD63/ ICAM-1/ CD9/ IL-1B, IL-6, IL-8, ICAM-1, CCL-2, CCL-4, CCL-5, CCL-10, TNF-alpha/ GM-CSF/ IL-6/ IL-8/ TIMP2/ ICAM-1/ IL6-R/ CXCL10/ CCL-2/ CCL-5/ TNF-alpha/ TNF R/ PDGF-BB
non-EV: GM130
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HUVEC
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
110000
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
dUC
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9/ CD63/ ICAM-1/ ?-Actin
Not detected contaminants
GM130
ELISA
Detected EV-associated proteins
IL-1B, IL-6, IL-8, ICAM-1, CCL-2, CCL-4, CCL-5, CCL-10, TNF-alpha
Other 1
ELISA
Detected EV-associated proteins
GM-CSF/ IL-6/ IL-8/ TIMP2/ ICAM-1/ IL6-R/ CXCL10/ CCL-2/ CCL-5/ TNF-alpha/ TNF R/ PDGF-BB
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV220208
species
Homo sapiens
sample type
Cell culture
cell type
HUVEC
condition
Control condition
TNF-alpha
separation protocol
Filtration
dUC
Filtration
dUC
Exp. nr.
1
2
EV-METRIC %
67
56