Search > Results
You searched for: EV220091 (EV-TRACK ID)
Showing 1 - 8 of 8
Showing 1 - 8 of 8
Details | EV-TRACK ID | Experiment nr. | Species | Sample type | Separation protocol | First author | Year | EV-METRIC |
---|---|---|---|---|---|---|---|---|
EV220091 | 1/8 | Homo sapiens | HeLa |
(d)(U)C SEC (non-commercial) |
Visan, Kekoolani | 2022 | 67% | |
Study summaryFull title
All authors
Kekoolani S. Visan, Richard J. Lobb, Sunyoung Ham, Luize G. Lima, Carlos Palma, Chai Pei Zhi Edna, Li-Ying Wu, Harsha Gowda, Keshava K. Datta, Gunter Hartel, Carlos Salomon, Andreas Möller
Journal
J Extracell Vesicles
Abstract
Small extracellular vesicles (sEVs) provide major promise for advances in cancer diagnostics, progno (show more...)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial) Protein markers
EV: CD9/ HSP70/ TSG101
non-EV: Calnexin/ Albumin Proteomics
no
Show all info
Study aim
New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HeLa
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
100,000
Wash: volume per pellet (ml)
1
Wash: time (min)
90
Wash: Rotor Type
S55-A2
Wash: speed (g)
100,000
Size-exclusion chromatography
Used for validation?
Yes
Total column volume (mL)
10
Sample volume/column (mL)
0.5
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Detected EV-associated proteins
CD9/ HSP70/ TSG101
Detected contaminants
Albumin
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
117.7
EV concentration
Yes
Particle yield
Total Particles: 1.63E+09
TRPS
Report type
Modus
Reported size (nm)
105.3333333
EV concentration
Yes
Particle yield
Total Particles: 8.91E+07
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV220091 | 2/8 | Homo sapiens | HeLa |
UF SEC (non-commercial) |
Visan, Kekoolani | 2022 | 63% | |
Study summaryFull title
All authors
Kekoolani S. Visan, Richard J. Lobb, Sunyoung Ham, Luize G. Lima, Carlos Palma, Chai Pei Zhi Edna, Li-Ying Wu, Harsha Gowda, Keshava K. Datta, Gunter Hartel, Carlos Salomon, Andreas Möller
Journal
J Extracell Vesicles
Abstract
Small extracellular vesicles (sEVs) provide major promise for advances in cancer diagnostics, progno (show more...)
EV-METRIC
63% (93rd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
Ultrafiltration
Size-exclusion chromatography (non-commercial) Protein markers
EV: CD9/ Flotillin-1/ HSP70/ TSG101
non-EV: Calnexin/ Albumin Proteomics
no
Show all info
Study aim
New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HeLa
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
Ultra filtration
Cut-off size (kDa)
300
Membrane type
Polyethersulfone (PES)
Size-exclusion chromatography
Used for validation?
Yes
Total column volume (mL)
10
Sample volume/column (mL)
0.5
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Detected EV-associated proteins
CD9/ Flotillin-1/ HSP70/ TSG101
Detected contaminants
Albumin
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
133
EV concentration
Yes
Particle yield
Total Particles: 4.45E+10
TRPS
Report type
Modus
Reported size (nm)
98.33333333
EV concentration
Yes
Particle yield
Total Particles: 9.01E+08
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV220091 | 6/8 | Mus musculus | EO771 |
UF SEC (non-commercial) |
Visan, Kekoolani | 2022 | 38% | |
Study summaryFull title
All authors
Kekoolani S. Visan, Richard J. Lobb, Sunyoung Ham, Luize G. Lima, Carlos Palma, Chai Pei Zhi Edna, Li-Ying Wu, Harsha Gowda, Keshava K. Datta, Gunter Hartel, Carlos Salomon, Andreas Möller
Journal
J Extracell Vesicles
Abstract
Small extracellular vesicles (sEVs) provide major promise for advances in cancer diagnostics, progno (show more...)
EV-METRIC
38% (79th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
Ultrafiltration
Size-exclusion chromatography (non-commercial) Protein markers
EV: CD9/ HSP70/ CD63
non-EV: Albumin Proteomics
no
Show all info
Study aim
New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
EO771
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
Ultra filtration
Cut-off size (kDa)
300
Membrane type
Polyethersulfone (PES)
Size-exclusion chromatography
Used for validation?
Yes
Total column volume (mL)
10
Sample volume/column (mL)
0.5
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Detected EV-associated proteins
CD9/ HSP70
Detected contaminants
Albumin
Flow cytometry
Type of Flow cytometry
Amnis® ImageStream®X Mark II Imaging Flow Cytometer
Calibration bead size
0.8
Detected EV-associated proteins
CD9/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
142.9
EV concentration
Yes
Particle yield
Total Particles: 1.40333E+11
|
||||||||
EV220091 | 5/8 | Mus musculus | EO771 |
(d)(U)C SEC (non-commercial) |
Visan, Kekoolani | 2022 | 33% | |
Study summaryFull title
All authors
Kekoolani S. Visan, Richard J. Lobb, Sunyoung Ham, Luize G. Lima, Carlos Palma, Chai Pei Zhi Edna, Li-Ying Wu, Harsha Gowda, Keshava K. Datta, Gunter Hartel, Carlos Salomon, Andreas Möller
Journal
J Extracell Vesicles
Abstract
Small extracellular vesicles (sEVs) provide major promise for advances in cancer diagnostics, progno (show more...)
EV-METRIC
33% (74th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial) Protein markers
EV: CD9/ HSP70
non-EV: Albumin Proteomics
no
Show all info
Study aim
New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
EO771
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
100,000
Wash: volume per pellet (ml)
1
Wash: time (min)
120
Wash: Rotor Type
Type 50.2 Ti
Wash: speed (g)
100,000
Size-exclusion chromatography
Used for validation?
Yes
Total column volume (mL)
10
Sample volume/column (mL)
0.5
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Detected EV-associated proteins
CD9/ HSP70
Detected contaminants
Albumin
Flow cytometry
Type of Flow cytometry
Amnis® ImageStream®X Mark II Imaging Flow Cytometer
Calibration bead size
0.8
Detected EV-associated proteins
CD9
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
129.2
EV concentration
Yes
Particle yield
Total Particles: 27900000000
|
||||||||
EV220091 | 7/8 | Mus musculus | B16F10 |
(d)(U)C SEC (non-commercial) |
Visan, Kekoolani | 2022 | 33% | |
Study summaryFull title
All authors
Kekoolani S. Visan, Richard J. Lobb, Sunyoung Ham, Luize G. Lima, Carlos Palma, Chai Pei Zhi Edna, Li-Ying Wu, Harsha Gowda, Keshava K. Datta, Gunter Hartel, Carlos Salomon, Andreas Möller
Journal
J Extracell Vesicles
Abstract
Small extracellular vesicles (sEVs) provide major promise for advances in cancer diagnostics, progno (show more...)
EV-METRIC
33% (74th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial) Protein markers
EV: CD9/ HSP70
non-EV: Albumin Proteomics
no
Show all info
Study aim
New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
B16F10
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
100,000
Wash: volume per pellet (ml)
1
Wash: time (min)
120
Wash: Rotor Type
Type 50.2 Ti
Wash: speed (g)
100,000
Size-exclusion chromatography
Used for validation?
Yes
Total column volume (mL)
10
Sample volume/column (mL)
0.5
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Detected EV-associated proteins
CD9/ HSP70
Detected contaminants
Albumin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
137.5
EV concentration
Yes
Particle yield
Total Particles: 9205000000
|
||||||||
EV220091 | 8/8 | Mus musculus | B16F10 |
UF SEC (non-commercial) |
Visan, Kekoolani | 2022 | 25% | |
Study summaryFull title
All authors
Kekoolani S. Visan, Richard J. Lobb, Sunyoung Ham, Luize G. Lima, Carlos Palma, Chai Pei Zhi Edna, Li-Ying Wu, Harsha Gowda, Keshava K. Datta, Gunter Hartel, Carlos Salomon, Andreas Möller
Journal
J Extracell Vesicles
Abstract
Small extracellular vesicles (sEVs) provide major promise for advances in cancer diagnostics, progno (show more...)
EV-METRIC
25% (63rd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
Ultrafiltration
Size-exclusion chromatography (non-commercial) Protein markers
EV: CD9/ HSP70
non-EV: Albumin Proteomics
no
Show all info
Study aim
New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
B16F10
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
Ultra filtration
Cut-off size (kDa)
300
Membrane type
Polyethersulfone (PES)
Size-exclusion chromatography
Used for validation?
Yes
Total column volume (mL)
10
Sample volume/column (mL)
0.5
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Detected EV-associated proteins
CD9/ HSP70
Detected contaminants
Albumin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
125.8
EV concentration
Yes
Particle yield
Total Particles: 2.09269E+11
|
||||||||
EV220091 | 3/8 | Homo sapiens | MDAMB231 |
(d)(U)C SEC (non-commercial) |
Visan, Kekoolani | 2022 | 14% | |
Study summaryFull title
All authors
Kekoolani S. Visan, Richard J. Lobb, Sunyoung Ham, Luize G. Lima, Carlos Palma, Chai Pei Zhi Edna, Li-Ying Wu, Harsha Gowda, Keshava K. Datta, Gunter Hartel, Carlos Salomon, Andreas Möller
Journal
J Extracell Vesicles
Abstract
Small extracellular vesicles (sEVs) provide major promise for advances in cancer diagnostics, progno (show more...)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial) Protein markers
EV: None
non-EV: None Proteomics
no
Show all info
Study aim
New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDAMB231
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
100,000
Wash: volume per pellet (ml)
1
Wash: time (min)
120
Wash: Rotor Type
Type 50.2 Ti
Wash: speed (g)
100,000
Size-exclusion chromatography
Used for validation?
Yes
Total column volume (mL)
10
Sample volume/column (mL)
0.5
Characterization: Protein analysis
None
Protein Concentration Method
Bradford
Protein Yield (µg)
per milliliter of starting sample
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
136.2555556
EV concentration
Yes
Particle yield
Total Particles: 1.88E+09
|
||||||||
EV220091 | 4/8 | Homo sapiens | MDAMB231 |
UF SEC (non-commercial) |
Visan, Kekoolani | 2022 | 0% | |
Study summaryFull title
All authors
Kekoolani S. Visan, Richard J. Lobb, Sunyoung Ham, Luize G. Lima, Carlos Palma, Chai Pei Zhi Edna, Li-Ying Wu, Harsha Gowda, Keshava K. Datta, Gunter Hartel, Carlos Salomon, Andreas Möller
Journal
J Extracell Vesicles
Abstract
Small extracellular vesicles (sEVs) provide major promise for advances in cancer diagnostics, progno (show more...)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
Ultrafiltration
Size-exclusion chromatography (non-commercial) Protein markers
EV: None
non-EV: None Proteomics
no
Show all info
Study aim
New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDAMB231
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
Ultra filtration
Cut-off size (kDa)
300
Membrane type
Polyethersulfone (PES)
Size-exclusion chromatography
Used for validation?
Yes
Total column volume (mL)
10
Sample volume/column (mL)
0.5
Characterization: Protein analysis
None
Protein Concentration Method
Bradford
Protein Yield (µg)
per milliliter of starting sample
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
153.7
EV concentration
Yes
Particle yield
Total Particles: 36921301826
|
||||||||
1 - 8 of 8 |
EV-TRACK ID | EV220091 | |||||||
---|---|---|---|---|---|---|---|---|
species | Homo sapiens | Homo sapiens | Mus musculus | Mus musculus | Mus musculus | Mus musculus | Homo sapiens | Homo sapiens |
sample type | Cell culture | Cell culture | Cell culture | Cell culture | Cell culture | Cell culture | Cell culture | Cell culture |
cell type | HeLa | HeLa | EO771 | EO771 | B16F10 | B16F10 | MDAMB231 | MDAMB231 |
condition | Control condition | Control condition | Control condition | Control condition | Control condition | Control condition | Control condition | Control condition |
separation protocol | dUC/ Size-exclusion chromatography (non-commercial) | Ultrafiltration/ Size-exclusion chromatography (non-commercial) | Ultrafiltration/ Size-exclusion chromatography (non-commercial) | dUC/ Size-exclusion chromatography (non-commercial) | dUC/ Size-exclusion chromatography (non-commercial) | Ultrafiltration/ Size-exclusion chromatography (non-commercial) | dUC/ Size-exclusion chromatography (non-commercial) | Ultrafiltration/ Size-exclusion chromatography (non-commercial) |
Exp. nr. | 1 | 2 | 6 | 5 | 7 | 8 | 3 | 4 |
EV-METRIC % | 67 | 63 | 38 | 33 | 33 | 25 | 14 | 0 |