Search > Results

You searched for: EV220015 (EV-TRACK ID)

Showing 1 - 9 of 9

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV220015 2/9 Homo sapiens HepG2 (d)(U)C Verma VK 2016 33%

Study summary

Full title
All authors
Verma VK, Li H, Wang R, Hirsova P, Mushref M, Liu Y, Cao S, Contreras PC, Malhi H, Kamath PS, Gores GJ, Shah VH
Journal
J Hepatol
Abstract
The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macropha (show more...)The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macrophages in alcoholic liver disease (ALD) are unclear. The role of released nano-sized membrane vesicles, termed extracellular vesicles (EV), in cell-to-cell communication has become increasingly recognized. We tested the hypothesis that hepatocytes exposed to alcohol may increase EV release to elicit macrophage activation. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Cytochrome P450 2E1 overexpression
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: LAMP-1/ RAB5/ CD40L/ TSG101/ CD63/ CD40/ IFN-gamma/ IL-23/ IL1-Ra/ PAI-1/ MIF/ IL-16/ MIP-1alpha/ GROalpha/ C5/5a/ I-309/ GM-CSF/ G-CSF/ sICAM-1/ IL-17e/ TNF-alpha/ I-TAC/ IL-13/ RANTES/ IL1-alpha/ sTREM-1/ MCP1/ IL-2/ IL-4/ MIP-1beta/ IL-27/ IL-17/ IL-12p70/ IL-6/ IL-
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HepG2
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
2h at 100,000g/ Other preparation
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: time (min)
120
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
110000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Detected EV-associated proteins
CD63/ LAMP-1/ RAB5/ CD40L/ TSG101
Detected EV-associated proteins
CD40/ IFN-gamma/ IL-23/ IL1-Ra/ PAI-1/ MIF/ IL-16/ MIP-1alpha/ GROalpha/ C5/5a/ I-309/ GM-CSF/ G-CSF/ sICAM-1/ IL-17e/ TNF-alpha/ I-TAC/ IL-13/ RANTES/ IL1-alpha/ sTREM-1/ MCP1/
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
110
EV concentration
Yes
EM
EM-type
Immuno-EM
EM protein
Other/ TSG101/ CD40L
Image type
Close-up
EV220015 6/9 Homo sapiens Serum (d)(U)C Verma VK 2016 29%

Study summary

Full title
All authors
Verma VK, Li H, Wang R, Hirsova P, Mushref M, Liu Y, Cao S, Contreras PC, Malhi H, Kamath PS, Gores GJ, Shah VH
Journal
J Hepatol
Abstract
The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macropha (show more...)The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macrophages in alcoholic liver disease (ALD) are unclear. The role of released nano-sized membrane vesicles, termed extracellular vesicles (EV), in cell-to-cell communication has become increasingly recognized. We tested the hypothesis that hepatocytes exposed to alcohol may increase EV release to elicit macrophage activation. (hide)
EV-METRIC
29% (72nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Alcohol hepatitis
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD40/ IFN-gamma/ IL-23/ IL1-Ra/ PAI-1/ MIF/ IL-16/ MIP-1alpha/ GROalpha/ C5/5a/ I-309/ GM-CSF/ G-CSF/ sICAM-1/ IL-17e/ TNF-alpha/ I-TAC/ IL-13/ RANTES/ IL1-alpha/ sTREM-1/ MCP1/ IL-2/ IL-4/ MIP-1beta/ IL-27/ IL-17/ IL-12p70/ IL-6/ IL-1beta/ IP-10/ IL-5/ SDF-1/ IL-10/
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: time (min)
120
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
110000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Detected EV-associated proteins
CD40/ IFN-gamma/ IL-23/ IL1-Ra/ PAI-1/ MIF/ IL-16/ MIP-1alpha/ GROalpha/ C5/5a/ I-309/ GM-CSF/ G-CSF/ sICAM-1/ IL-17e/ TNF-alpha/ I-TAC/ IL-13/ RANTES/ IL1-alpha/ sTREM-1/ MCP1/
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EV220015 1/9 Homo sapiens HepG2 (d)(U)C Verma VK 2016 14%

Study summary

Full title
All authors
Verma VK, Li H, Wang R, Hirsova P, Mushref M, Liu Y, Cao S, Contreras PC, Malhi H, Kamath PS, Gores GJ, Shah VH
Journal
J Hepatol
Abstract
The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macropha (show more...)The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macrophages in alcoholic liver disease (ALD) are unclear. The role of released nano-sized membrane vesicles, termed extracellular vesicles (EV), in cell-to-cell communication has become increasingly recognized. We tested the hypothesis that hepatocytes exposed to alcohol may increase EV release to elicit macrophage activation. (hide)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Alcohol dehydrogenase overexpression
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HepG2
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
2h at 100,000g/ Other preparation
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: time (min)
120
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
110000
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EV220015 5/9 Homo sapiens Serum (d)(U)C Verma VK 2016 14%

Study summary

Full title
All authors
Verma VK, Li H, Wang R, Hirsova P, Mushref M, Liu Y, Cao S, Contreras PC, Malhi H, Kamath PS, Gores GJ, Shah VH
Journal
J Hepatol
Abstract
The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macropha (show more...)The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macrophages in alcoholic liver disease (ALD) are unclear. The role of released nano-sized membrane vesicles, termed extracellular vesicles (EV), in cell-to-cell communication has become increasingly recognized. We tested the hypothesis that hepatocytes exposed to alcohol may increase EV release to elicit macrophage activation. (hide)
EV-METRIC
14% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Drinking controls
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: time (min)
120
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
110000
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EV220015 7/9 Mus musculus Serum (d)(U)C Verma VK 2016 14%

Study summary

Full title
All authors
Verma VK, Li H, Wang R, Hirsova P, Mushref M, Liu Y, Cao S, Contreras PC, Malhi H, Kamath PS, Gores GJ, Shah VH
Journal
J Hepatol
Abstract
The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macropha (show more...)The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macrophages in alcoholic liver disease (ALD) are unclear. The role of released nano-sized membrane vesicles, termed extracellular vesicles (EV), in cell-to-cell communication has become increasingly recognized. We tested the hypothesis that hepatocytes exposed to alcohol may increase EV release to elicit macrophage activation. (hide)
EV-METRIC
14% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Wild-type
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
TLA-100
Pelleting: speed (g)
100000
Wash: time (min)
120
Wash: Rotor Type
TLA-100
Wash: speed (g)
110000
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EV220015 8/9 Mus musculus Serum (d)(U)C Verma VK 2016 14%

Study summary

Full title
All authors
Verma VK, Li H, Wang R, Hirsova P, Mushref M, Liu Y, Cao S, Contreras PC, Malhi H, Kamath PS, Gores GJ, Shah VH
Journal
J Hepatol
Abstract
The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macropha (show more...)The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macrophages in alcoholic liver disease (ALD) are unclear. The role of released nano-sized membrane vesicles, termed extracellular vesicles (EV), in cell-to-cell communication has become increasingly recognized. We tested the hypothesis that hepatocytes exposed to alcohol may increase EV release to elicit macrophage activation. (hide)
EV-METRIC
14% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
TR knockout
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
TLA-100
Pelleting: speed (g)
100000
Wash: time (min)
120
Wash: Rotor Type
TLA-100
Wash: speed (g)
110000
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EV220015 9/9 Mus musculus Serum (d)(U)C Verma VK 2016 14%

Study summary

Full title
All authors
Verma VK, Li H, Wang R, Hirsova P, Mushref M, Liu Y, Cao S, Contreras PC, Malhi H, Kamath PS, Gores GJ, Shah VH
Journal
J Hepatol
Abstract
The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macropha (show more...)The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macrophages in alcoholic liver disease (ALD) are unclear. The role of released nano-sized membrane vesicles, termed extracellular vesicles (EV), in cell-to-cell communication has become increasingly recognized. We tested the hypothesis that hepatocytes exposed to alcohol may increase EV release to elicit macrophage activation. (hide)
EV-METRIC
14% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
IDN-7314 knockout
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
TLA-100
Pelleting: speed (g)
100000
Wash: time (min)
120
Wash: Rotor Type
TLA-100
Wash: speed (g)
110000
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EV220015 3/9 Homo sapiens HepG2 (d)(U)C Verma VK 2016 0%

Study summary

Full title
All authors
Verma VK, Li H, Wang R, Hirsova P, Mushref M, Liu Y, Cao S, Contreras PC, Malhi H, Kamath PS, Gores GJ, Shah VH
Journal
J Hepatol
Abstract
The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macropha (show more...)The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macrophages in alcoholic liver disease (ALD) are unclear. The role of released nano-sized membrane vesicles, termed extracellular vesicles (EV), in cell-to-cell communication has become increasingly recognized. We tested the hypothesis that hepatocytes exposed to alcohol may increase EV release to elicit macrophage activation. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Wildtype
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HepG2
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
2h at 100,000g/ Other preparation
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: time (min)
120
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
110000
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EV220015 4/9 Homo sapiens Serum (d)(U)C Verma VK 2016 0%

Study summary

Full title
All authors
Verma VK, Li H, Wang R, Hirsova P, Mushref M, Liu Y, Cao S, Contreras PC, Malhi H, Kamath PS, Gores GJ, Shah VH
Journal
J Hepatol
Abstract
The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macropha (show more...)The mechanisms by which hepatocyte exposure to alcohol activates inflammatory cells such as macrophages in alcoholic liver disease (ALD) are unclear. The role of released nano-sized membrane vesicles, termed extracellular vesicles (EV), in cell-to-cell communication has become increasingly recognized. We tested the hypothesis that hepatocytes exposed to alcohol may increase EV release to elicit macrophage activation. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: time (min)
120
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
110000
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
1 - 9 of 9
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV220015
species
Homo
sapiens
Homo
sapiens
Homo
sapiens
Homo
sapiens
Mus
musculus
Mus
musculus
Mus
musculus
Homo
sapiens
Homo
sapiens
sample type
Cell
culture
Serum
Cell
culture
Serum
Serum
Serum
Serum
Cell
culture
Serum
cell type
HepG2
NA
HepG2
NA
NA
NA
NA
HepG2
NA
medium
EV-depleted
medium
NA
EV-depleted
medium
NA
NA
NA
NA
EV-depleted
medium
NA
condition
Cytochrome
P450
2E1
overexpression
Alcohol
hepatitis
Alcohol
dehydrogenase
overexpression
Drinking
controls
Wild-type
TR
knockout
IDN-7314
knockout
Wildtype
Control
condition
separation protocol
dUC
dUC
dUC
dUC
dUC
dUC
dUC
dUC
dUC
Exp. nr.
2
6
1
5
7
8
9
3
4
EV-METRIC %
33
29
14
14
14
14
14
0
0