Search > Results

You searched for: EV210490 (EV-TRACK ID)

Showing 1 - 5 of 5

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK code Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210490 2/5 Homo sapiens Cell culture supernatant (d)(U)C Bosque A 2016 44%

Study summary

Full title
All authors
Bosque A, Dietz L, Gallego-Lleyda A, Sanclemente M, Iturralde M, Naval J, Alava MA, Martínez-Lostao L, Thierse HJ, Anel A
Journal
Oncotarget
Abstract
We have previously characterized that FasL and Apo2L/TRAIL are stored in their bioactive form inside (show more...)We have previously characterized that FasL and Apo2L/TRAIL are stored in their bioactive form inside human T cell blasts in intraluminal vesicles present in multivesicular bodies. These vesicles are rapidly released to the supernatant in the form of exosomes upon re-activation of T cells. In this study we have compared for the first time proteomics of exosomes produced by normal human T cell blasts with those produced by tumoral Jurkat cells, with the objective of identify proteins associated with tumoral exosomes that could have a previously unrecognized role in malignancy. We have identified 359 and 418 proteins in exosomes from T cell blasts and Jurkat cells, respectively. Interestingly, only 145 (around a 40%) are common. The major proteins in both cases are actin and tubulin isoforms and the common interaction nodes correspond to these cytoskeleton and related proteins, as well as to ribosomal and mRNA granule proteins. We detected 14 membrane proteins that were especially enriched in exosomes from Jurkat cells as compared with T cell blasts. The most abundant of these proteins was valosin-containing protein (VCP), a membrane ATPase involved in ER homeostasis and ubiquitination. In this work, we also show that leukemic cells are more sensitive to cell death induced by the VCP inhibitor DBeQ than normal T cells. Furthermore, VCP inhibition prevents functional exosome secretion only in Jurkat cells, but not in T cell blasts. These results suggest VCP targeting as a new selective pathway to exploit in cancer treatment to prevent tumoral exosome secretion. (hide)
EV-METRIC
44% (77th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
PHA
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: HSP70/ HSP90/ Hsp60/ Hsp40/ Rab5/ / VCP/ Apo2L/TRAIL/ FasL/ Lck/ alpha-Tubulin/ beta-Actin/ TCP-1alpha
non-EV: Grp94
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Jurkat
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
110000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
HSP90/ VCP/ Apo2L/TRAIL/ FasL/ Lck/ alpha-Tubulin/ beta-Actin/ TCP-1alpha/ HSP70
Not detected EV-associated proteins
Hsp60/ Hsp40/ Rab5
Not detected contaminants
Grp94
Proteomics database
No
Characterization: Lipid analysis
Yes
EV210490 4/5 Homo sapiens Cell culture supernatant (d)(U)C Bosque A 2016 44%

Study summary

Full title
All authors
Bosque A, Dietz L, Gallego-Lleyda A, Sanclemente M, Iturralde M, Naval J, Alava MA, Martínez-Lostao L, Thierse HJ, Anel A
Journal
Oncotarget
Abstract
We have previously characterized that FasL and Apo2L/TRAIL are stored in their bioactive form inside (show more...)We have previously characterized that FasL and Apo2L/TRAIL are stored in their bioactive form inside human T cell blasts in intraluminal vesicles present in multivesicular bodies. These vesicles are rapidly released to the supernatant in the form of exosomes upon re-activation of T cells. In this study we have compared for the first time proteomics of exosomes produced by normal human T cell blasts with those produced by tumoral Jurkat cells, with the objective of identify proteins associated with tumoral exosomes that could have a previously unrecognized role in malignancy. We have identified 359 and 418 proteins in exosomes from T cell blasts and Jurkat cells, respectively. Interestingly, only 145 (around a 40%) are common. The major proteins in both cases are actin and tubulin isoforms and the common interaction nodes correspond to these cytoskeleton and related proteins, as well as to ribosomal and mRNA granule proteins. We detected 14 membrane proteins that were especially enriched in exosomes from Jurkat cells as compared with T cell blasts. The most abundant of these proteins was valosin-containing protein (VCP), a membrane ATPase involved in ER homeostasis and ubiquitination. In this work, we also show that leukemic cells are more sensitive to cell death induced by the VCP inhibitor DBeQ than normal T cells. Furthermore, VCP inhibition prevents functional exosome secretion only in Jurkat cells, but not in T cell blasts. These results suggest VCP targeting as a new selective pathway to exploit in cancer treatment to prevent tumoral exosome secretion. (hide)
EV-METRIC
44% (77th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
PHA
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: VCP/ alpha-Tubulin/ beta-Actin/ TCP-1alpha/ HSP90/ CD63/ HSP70
non-EV: Grp94
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
T-cell blasts
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
110000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
VCP/ alpha-Tubulin/ beta-Actin/ TCP-1alpha/ CD63/ HSP90/ HSP70
Not detected contaminants
Grp94
Proteomics database
No
Characterization: Lipid analysis
Yes
EM
EM-type
Immuno-EM
EM protein
Other/ FasL/ APO2/TRAIL
Image type
Close-up
Report size (nm)
100-130
EV210490 1/5 Homo sapiens Cell culture supernatant (d)(U)C Bosque A 2016 33%

Study summary

Full title
All authors
Bosque A, Dietz L, Gallego-Lleyda A, Sanclemente M, Iturralde M, Naval J, Alava MA, Martínez-Lostao L, Thierse HJ, Anel A
Journal
Oncotarget
Abstract
We have previously characterized that FasL and Apo2L/TRAIL are stored in their bioactive form inside (show more...)We have previously characterized that FasL and Apo2L/TRAIL are stored in their bioactive form inside human T cell blasts in intraluminal vesicles present in multivesicular bodies. These vesicles are rapidly released to the supernatant in the form of exosomes upon re-activation of T cells. In this study we have compared for the first time proteomics of exosomes produced by normal human T cell blasts with those produced by tumoral Jurkat cells, with the objective of identify proteins associated with tumoral exosomes that could have a previously unrecognized role in malignancy. We have identified 359 and 418 proteins in exosomes from T cell blasts and Jurkat cells, respectively. Interestingly, only 145 (around a 40%) are common. The major proteins in both cases are actin and tubulin isoforms and the common interaction nodes correspond to these cytoskeleton and related proteins, as well as to ribosomal and mRNA granule proteins. We detected 14 membrane proteins that were especially enriched in exosomes from Jurkat cells as compared with T cell blasts. The most abundant of these proteins was valosin-containing protein (VCP), a membrane ATPase involved in ER homeostasis and ubiquitination. In this work, we also show that leukemic cells are more sensitive to cell death induced by the VCP inhibitor DBeQ than normal T cells. Furthermore, VCP inhibition prevents functional exosome secretion only in Jurkat cells, but not in T cell blasts. These results suggest VCP targeting as a new selective pathway to exploit in cancer treatment to prevent tumoral exosome secretion. (hide)
EV-METRIC
33% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: VCP/ CD63
non-EV: None
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Jurkat
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
110000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63/ VCP
Proteomics database
No
Characterization: Lipid analysis
Yes
EV210490 3/5 Homo sapiens Cell culture supernatant (d)(U)C Bosque A 2016 33%

Study summary

Full title
All authors
Bosque A, Dietz L, Gallego-Lleyda A, Sanclemente M, Iturralde M, Naval J, Alava MA, Martínez-Lostao L, Thierse HJ, Anel A
Journal
Oncotarget
Abstract
We have previously characterized that FasL and Apo2L/TRAIL are stored in their bioactive form inside (show more...)We have previously characterized that FasL and Apo2L/TRAIL are stored in their bioactive form inside human T cell blasts in intraluminal vesicles present in multivesicular bodies. These vesicles are rapidly released to the supernatant in the form of exosomes upon re-activation of T cells. In this study we have compared for the first time proteomics of exosomes produced by normal human T cell blasts with those produced by tumoral Jurkat cells, with the objective of identify proteins associated with tumoral exosomes that could have a previously unrecognized role in malignancy. We have identified 359 and 418 proteins in exosomes from T cell blasts and Jurkat cells, respectively. Interestingly, only 145 (around a 40%) are common. The major proteins in both cases are actin and tubulin isoforms and the common interaction nodes correspond to these cytoskeleton and related proteins, as well as to ribosomal and mRNA granule proteins. We detected 14 membrane proteins that were especially enriched in exosomes from Jurkat cells as compared with T cell blasts. The most abundant of these proteins was valosin-containing protein (VCP), a membrane ATPase involved in ER homeostasis and ubiquitination. In this work, we also show that leukemic cells are more sensitive to cell death induced by the VCP inhibitor DBeQ than normal T cells. Furthermore, VCP inhibition prevents functional exosome secretion only in Jurkat cells, but not in T cell blasts. These results suggest VCP targeting as a new selective pathway to exploit in cancer treatment to prevent tumoral exosome secretion. (hide)
EV-METRIC
33% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: VCP
non-EV: None
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
T-cell blasts
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
110000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
VCP
Proteomics database
No
Characterization: Lipid analysis
Yes
EV210490 5/5 Homo sapiens Cell culture supernatant (d)(U)C Bosque A 2016 14%

Study summary

Full title
All authors
Bosque A, Dietz L, Gallego-Lleyda A, Sanclemente M, Iturralde M, Naval J, Alava MA, Martínez-Lostao L, Thierse HJ, Anel A
Journal
Oncotarget
Abstract
We have previously characterized that FasL and Apo2L/TRAIL are stored in their bioactive form inside (show more...)We have previously characterized that FasL and Apo2L/TRAIL are stored in their bioactive form inside human T cell blasts in intraluminal vesicles present in multivesicular bodies. These vesicles are rapidly released to the supernatant in the form of exosomes upon re-activation of T cells. In this study we have compared for the first time proteomics of exosomes produced by normal human T cell blasts with those produced by tumoral Jurkat cells, with the objective of identify proteins associated with tumoral exosomes that could have a previously unrecognized role in malignancy. We have identified 359 and 418 proteins in exosomes from T cell blasts and Jurkat cells, respectively. Interestingly, only 145 (around a 40%) are common. The major proteins in both cases are actin and tubulin isoforms and the common interaction nodes correspond to these cytoskeleton and related proteins, as well as to ribosomal and mRNA granule proteins. We detected 14 membrane proteins that were especially enriched in exosomes from Jurkat cells as compared with T cell blasts. The most abundant of these proteins was valosin-containing protein (VCP), a membrane ATPase involved in ER homeostasis and ubiquitination. In this work, we also show that leukemic cells are more sensitive to cell death induced by the VCP inhibitor DBeQ than normal T cells. Furthermore, VCP inhibition prevents functional exosome secretion only in Jurkat cells, but not in T cell blasts. These results suggest VCP targeting as a new selective pathway to exploit in cancer treatment to prevent tumoral exosome secretion. (hide)
EV-METRIC
14% (38th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Immobilized anti-CD59 mAb VJ1/12.2
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
T-cell blasts
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
110000
Characterization: Protein analysis
None
Protein Concentration Method
Bradford
Characterization: Lipid analysis
No
EM
EM-type
Immuno-EM
EM protein
Other/ FasL/ APO2/TRAIL
Image type
Close-up
Report size (nm)
100-130
1 - 5 of 5
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV210490
species
Homo sapiens
sample type
Cell culture
cell type
Jurkat
T-cell blasts
Jurkat
T-cell blasts
T-cell blasts
condition
PHA
PHA
Control condition
Control condition
Immobilized
anti-CD59 mAb VJ1/12.2
separation protocol
dUC
dUC
dUC
dUC
dUC
Exp. nr.
2
4
1
3
5
EV-METRIC %
44
44
33
33
14