Search > Results

You searched for: EV210411 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210411 1/2 Rattus norvegicus PC12 ExoQuick Grindheim AK 2016 25%

Study summary

Full title
All authors
Grindheim AK, Hollås H, Raddum AM, Saraste J, Vedeler A
Journal
J Cell Sci
Abstract
Annexin A2 (AnxA2) is a multi-functional and -compartmental protein whose subcellular localisation a (show more...)Annexin A2 (AnxA2) is a multi-functional and -compartmental protein whose subcellular localisation and functions are tightly regulated by its post-translational modifications. AnxA2 and its Tyr23-phosphorylated form (pTyr23AnxA2) are involved in malignant cell transformation, metastasis and angiogenesis. Here, we show that H2O2 exerts rapid, simultaneous and opposite effects on the Tyr23 phosphorylation status of AnxA2 in two distinct compartments of rat pheochromocytoma (PC12) cells. Reactive oxygen species induce dephosphorylation of pTyr23AnxA2 located in the PML bodies of the nucleus, whereas AnxA2 associated with F-actin at the cell cortex is Tyr23 phosphorylated. The H2O2-induced responses in both compartments are transient and the pTyr23AnxA2 accumulating at the cell cortex is subsequently incorporated into vesicles and then released to the extracellular space. Blocking nuclear export by leptomycin B does not affect the nuclear pool of pTyr23AnxA2, but increases the amount of total AnxA2 in this compartment, indicating that the protein might have several functions in the nucleus. These results suggest that Tyr23 phosphorylation can regulate the function of AnxA2 at distinct subcellular sites. (hide)
EV-METRIC
25% (63rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Protein markers
EV: TSG101/ CD63/ T-cadherin/ PTyr23AnxA2/ AnxA2
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Rattus norvegicus
Sample Type
Cell culture supernatant
EV-producing cells
PC12
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
TSG101
Not detected EV-associated proteins
T-cadherin/ PTyr23AnxA2/ AnxA2/ CD63
Characterization: Lipid analysis
No
EV210411 2/2 Rattus norvegicus PC12 ExoQuick Grindheim AK 2016 25%

Study summary

Full title
All authors
Grindheim AK, Hollås H, Raddum AM, Saraste J, Vedeler A
Journal
J Cell Sci
Abstract
Annexin A2 (AnxA2) is a multi-functional and -compartmental protein whose subcellular localisation a (show more...)Annexin A2 (AnxA2) is a multi-functional and -compartmental protein whose subcellular localisation and functions are tightly regulated by its post-translational modifications. AnxA2 and its Tyr23-phosphorylated form (pTyr23AnxA2) are involved in malignant cell transformation, metastasis and angiogenesis. Here, we show that H2O2 exerts rapid, simultaneous and opposite effects on the Tyr23 phosphorylation status of AnxA2 in two distinct compartments of rat pheochromocytoma (PC12) cells. Reactive oxygen species induce dephosphorylation of pTyr23AnxA2 located in the PML bodies of the nucleus, whereas AnxA2 associated with F-actin at the cell cortex is Tyr23 phosphorylated. The H2O2-induced responses in both compartments are transient and the pTyr23AnxA2 accumulating at the cell cortex is subsequently incorporated into vesicles and then released to the extracellular space. Blocking nuclear export by leptomycin B does not affect the nuclear pool of pTyr23AnxA2, but increases the amount of total AnxA2 in this compartment, indicating that the protein might have several functions in the nucleus. These results suggest that Tyr23 phosphorylation can regulate the function of AnxA2 at distinct subcellular sites. (hide)
EV-METRIC
25% (63rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
H2O2 treatment
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Protein markers
EV: TSG101/ PTyr23AnxA2/ AnxA2/ T-cadherin/ CD63/ pTyr23AnxA2/ Ubiquitin
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Rattus norvegicus
Sample Type
Cell culture supernatant
EV-producing cells
PC12
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ PTyr23AnxA2/ AnxA2/ TSG101
Not detected EV-associated proteins
T-cadherin
Detected EV-associated proteins
pTyr23AnxA2/ Ubiquitin
Characterization: Lipid analysis
No
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV210411
species
Rattus norvegicus
sample type
Cell culture
cell type
PC12
condition
Control condition
H2O2 treatment
separation protocol
ExoQuick
ExoQuick
Exp. nr.
1
2
EV-METRIC %
25
25