Search > Results

You searched for: EV210360 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210360 1/2 Homo sapiens Urine DG
(d)(U)C
Abe H 2018 33%

Study summary

Full title
All authors
Abe H, Sakurai A, Ono H, Hayashi S, Yoshimoto S, Ochi A, Ueda S, Nishimura K, Shibata E, Tamaki M, Kishi F, Kishi S, Murakami T, Nagai K, Doi T
Journal
J Med Invest
Abstract
Diabetic nephropathy (DN) is the major cause of end-stage renal failure and is associated with incre (show more...)Diabetic nephropathy (DN) is the major cause of end-stage renal failure and is associated with increased morbidity and mortality as compared to other causes of renal disease. Albuminuria is often the first clinical indicator of the presence of DN. However, albuminuria or proteinuria is a common symptom in patients with various renal disorders. Therefore, specific biomarkers for the diagnosis of DN are required. A primary hallmark of DN is the progressive damage and death of glomerular podocytes, resulting in the leaking of proteins into the urine. Urinary exosomes released by podocytes are microvesicles containing information of the originated cells. Podocyte-derived signal transduction factors (PDSTFs) are good candidates to assess podocyte injuries. The profile of PDSTFs in urinary exosomes from patients with DN is different from that from patients with minimal change nehrotic syndrome. In addition, PDSTFs molecules in exosomes were derived from primary murine podocytes under high glucose conditions. Among PDSTFs in urinary exosomes, Wilms tumor 1 (WT1) levels reflected damage of diabetic glomeruli in the patients. Urinary exosomal WT1 can predict the decline in eGFR for the following several years. In conclusion, urinary exosomal WT1 is a useful biomarker to improve risk stratification in patients with DN. J. Med. Invest. 65:208-215, August, 2018. (hide)
EV-METRIC
33% (65th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Equal to or above 150,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: rotor type
RP-65
Pelleting: speed (g)
70000
Density gradient
Type
Continuous
Lowest density fraction
0.25 M
Highest density fraction
2 M
Total gradient volume, incl. sample (mL)
30
Sample volume (mL)
5
Orientation
Top-down
Rotor type
RPS-28SA
Speed (g)
100000
Duration (min)
1200
Fraction volume (mL)
2
Fraction processing
Centrifugation
Pelleting: volume per fraction
5
Pelleting: duration (min)
60
Pelleting: rotor type
RPS-50-2
Pelleting: speed (g)
200000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Detected EV-associated proteins
CD63/ CD81
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
EV210360 2/2 Homo sapiens Urine DG
(d)(U)C
Abe H 2018 33%

Study summary

Full title
All authors
Abe H, Sakurai A, Ono H, Hayashi S, Yoshimoto S, Ochi A, Ueda S, Nishimura K, Shibata E, Tamaki M, Kishi F, Kishi S, Murakami T, Nagai K, Doi T
Journal
J Med Invest
Abstract
Diabetic nephropathy (DN) is the major cause of end-stage renal failure and is associated with incre (show more...)Diabetic nephropathy (DN) is the major cause of end-stage renal failure and is associated with increased morbidity and mortality as compared to other causes of renal disease. Albuminuria is often the first clinical indicator of the presence of DN. However, albuminuria or proteinuria is a common symptom in patients with various renal disorders. Therefore, specific biomarkers for the diagnosis of DN are required. A primary hallmark of DN is the progressive damage and death of glomerular podocytes, resulting in the leaking of proteins into the urine. Urinary exosomes released by podocytes are microvesicles containing information of the originated cells. Podocyte-derived signal transduction factors (PDSTFs) are good candidates to assess podocyte injuries. The profile of PDSTFs in urinary exosomes from patients with DN is different from that from patients with minimal change nehrotic syndrome. In addition, PDSTFs molecules in exosomes were derived from primary murine podocytes under high glucose conditions. Among PDSTFs in urinary exosomes, Wilms tumor 1 (WT1) levels reflected damage of diabetic glomeruli in the patients. Urinary exosomal WT1 can predict the decline in eGFR for the following several years. In conclusion, urinary exosomal WT1 is a useful biomarker to improve risk stratification in patients with DN. J. Med. Invest. 65:208-215, August, 2018. (hide)
EV-METRIC
33% (65th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Proteinuria patients
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Equal to or above 150,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: rotor type
RP-65
Pelleting: speed (g)
70000
Density gradient
Type
Continuous
Lowest density fraction
0.25 M
Highest density fraction
2 M
Total gradient volume, incl. sample (mL)
30
Sample volume (mL)
5
Orientation
Top-down
Rotor type
RPS-28SA
Speed (g)
100000
Duration (min)
1200
Fraction volume (mL)
2
Fraction processing
Centrifugation
Pelleting: volume per fraction
5
Pelleting: duration (min)
60
Pelleting: rotor type
RPS-50-2
Pelleting: speed (g)
200000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Detected EV-associated proteins
CD63/ CD81
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV210360
species
Homo sapiens
sample type
Urine
condition
Control condition
Proteinuria patients
separation protocol
Density
gradient/ dUC
Density
gradient/ dUC
Exp. nr.
1
2
EV-METRIC %
33
33