Search > Results

You searched for: EV210320 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210320 2/2 Homo sapiens HEK293T (d)(U)C
UF
Lamichhane TN 2016 33%

Study summary

Full title
All authors
Lamichhane TN, Jeyaram A, Patel DB, Parajuli B, Livingston NK, Arumugasaamy N, Schardt JS, Jay SM
Journal
Cell Mol Bioeng
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as promising drug d (show more...)Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as promising drug delivery vehicles for small RNAs (siRNA and miRNA) due to their natural role in intercellular RNA transport. However, the application of EVs for therapeutic RNA delivery may be limited by loading approaches that can induce cargo aggregation or degradation. Here, we report the use of sonication as a means to actively load functional small RNAs into EVs. Conditions under which EVs could be loaded with small RNAs with minimal detectable aggregation were identified, and EVs loaded with therapeutic siRNA via sonication were observed to be taken up by recipient cells and capable of target mRNA knockdown leading to reduced protein expression. This system was ultimately applied to reduce expression of HER2, an oncogenic receptor tyrosine kinase that critically mediates breast cancer development and progression, and could be extended to other therapeutic targets. These results define important parameters informing the application of sonication as a small RNA loading method for EVs and demonstrate the potential utility of this approach for versatile cancer therapy. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
Protein markers
EV: Alix/ TSG101
non-EV: GAPDH
Proteomics
no
Show all info
Study aim
New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293T
EV-harvesting Medium
EV-depleted medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Ultra filtration
Cut-off size (kDa)
300
Membrane type
NS
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
Alix/ TSG101
Detected contaminants
GAPDH
Characterization: RNA analysis
RNA analysis
Type
(RT)-(q)PCR
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
134
EV concentration
Yes
EV210320 1/2 Homo sapiens MCF7 (d)(U)C
UF
Lamichhane TN 2016 14%

Study summary

Full title
All authors
Lamichhane TN, Jeyaram A, Patel DB, Parajuli B, Livingston NK, Arumugasaamy N, Schardt JS, Jay SM
Journal
Cell Mol Bioeng
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as promising drug d (show more...)Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as promising drug delivery vehicles for small RNAs (siRNA and miRNA) due to their natural role in intercellular RNA transport. However, the application of EVs for therapeutic RNA delivery may be limited by loading approaches that can induce cargo aggregation or degradation. Here, we report the use of sonication as a means to actively load functional small RNAs into EVs. Conditions under which EVs could be loaded with small RNAs with minimal detectable aggregation were identified, and EVs loaded with therapeutic siRNA via sonication were observed to be taken up by recipient cells and capable of target mRNA knockdown leading to reduced protein expression. This system was ultimately applied to reduce expression of HER2, an oncogenic receptor tyrosine kinase that critically mediates breast cancer development and progression, and could be extended to other therapeutic targets. These results define important parameters informing the application of sonication as a small RNA loading method for EVs and demonstrate the potential utility of this approach for versatile cancer therapy. (hide)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MCF7
EV-harvesting Medium
EV-depleted medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Ultra filtration
Cut-off size (kDa)
300
Membrane type
NS
Characterization: Protein analysis
None
Protein Concentration Method
BCA
Characterization: RNA analysis
RNA analysis
Type
(RT)-(q)PCR
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV210320
species
Homo sapiens
sample type
Cell culture
cell type
HEK293T
MCF7
condition
Control condition
Control condition
separation protocol
dUC/ Ultrafiltration
dUC/ Ultrafiltration
Exp. nr.
2
1
EV-METRIC %
33
14