Search > Results

You searched for: EV210187 (EV-TRACK ID)

Showing 1 - 5 of 5

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210187 1/5 Homo sapiens K562 (d)(U)C Swatler, Julian 2022 78%

Study summary

Full title
All authors
Julian Swatler, Laura Turos-Korgul, Marta Brewinska-Olchowik, Sara De Biasi, Wioleta Dudka, Bac Viet Le, Agata Kominek, Salwador Cyranowski, Paulina Pilanc, Elyas Mohammadi, Dominik Cysewski, Ewa Kozlowska, Wioleta Grabowska-Pyrzewicz, Urszula Wojda, Grzegorz W Basak, Jakub Mieczkowski, Tomasz Skorski 10 , Andrea Cossarizza 11 , Katarzyna Piwocka
Journal
Blood advances
Abstract
Chronic and acute myeloid leukemia (CML, AML) evade immune system surveillance and induce immunosupp (show more...)Chronic and acute myeloid leukemia (CML, AML) evade immune system surveillance and induce immunosuppression by expanding pro-leukemic Foxp3+ regulatory T cells (Tregs). High levels of immunosuppressive Tregs predict inferior response to chemotherapy, leukemia relapse and shorter survival. However, mechanisms that promote Tregs in myeloid leukemias remain largely unexplored. Here, we identify leukemic extracellular vesicles (EVs) as drivers of effector, pro-leukemic Tregs. Using mouse model of CML-like disease, we found that Rab27a-dependent secretion of leukemic EVs promoted leukemia engraftment, which was associated with higher abundance of activated, immunosuppressive Tregs. Leukemic EVs attenuated mTOR-S6 and activated STAT5 signaling, as well as evoked significant transcriptomic changes in Tregs. We further identified specific effector signature of Tregs promoted by leukemic EVs. Leukemic EVs-driven Tregs were characterized by elevated expression of effector/tumor Treg markers CD39, CCR8, CD30, TNFR2, CCR4, TIGIT, IL21R and included two distinct, effector Treg (eTreg) subsets - CD30+CCR8hiTNFR2hi eTreg1 and CD39+TIGIThi eTreg2. Finally, we showed that costimulatory ligand 4-1BBL/CD137L, shuttled by leukemic EVs, promoted suppressive activity and effector phenotype of Tregs by regulating expression of receptors such as CD30 and TNFR2. Collectively, our work highlights the role of leukemic extracellular vesicles in stimulation of immunosuppressive regulatory T cells and leukemia growth. We postulate that targeting of Rab27a-dependent secretion of leukemic EVs may be a viable therapeutic approach in myeloid neoplasms. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: TSG101/ Alix/ CD63/ CD81
non-EV: APOA1/ GM130
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
K562
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
98
Cell count
3.00E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100,000
Wash: volume per pellet (ml)
60
Wash: time (min)
90
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100,000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ TSG101/ Alix/ CD81
Not detected contaminants
APOA1/ GM130
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
94
EV concentration
Yes
Particle yield
Yes, as number of particles per million cells 3.00E+07
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210187 3/5 Homo sapiens MOLM-14 (d)(U)C Swatler, Julian 2022 67%

Study summary

Full title
All authors
Julian Swatler, Laura Turos-Korgul, Marta Brewinska-Olchowik, Sara De Biasi, Wioleta Dudka, Bac Viet Le, Agata Kominek, Salwador Cyranowski, Paulina Pilanc, Elyas Mohammadi, Dominik Cysewski, Ewa Kozlowska, Wioleta Grabowska-Pyrzewicz, Urszula Wojda, Grzegorz W Basak, Jakub Mieczkowski, Tomasz Skorski 10 , Andrea Cossarizza 11 , Katarzyna Piwocka
Journal
Blood advances
Abstract
Chronic and acute myeloid leukemia (CML, AML) evade immune system surveillance and induce immunosupp (show more...)Chronic and acute myeloid leukemia (CML, AML) evade immune system surveillance and induce immunosuppression by expanding pro-leukemic Foxp3+ regulatory T cells (Tregs). High levels of immunosuppressive Tregs predict inferior response to chemotherapy, leukemia relapse and shorter survival. However, mechanisms that promote Tregs in myeloid leukemias remain largely unexplored. Here, we identify leukemic extracellular vesicles (EVs) as drivers of effector, pro-leukemic Tregs. Using mouse model of CML-like disease, we found that Rab27a-dependent secretion of leukemic EVs promoted leukemia engraftment, which was associated with higher abundance of activated, immunosuppressive Tregs. Leukemic EVs attenuated mTOR-S6 and activated STAT5 signaling, as well as evoked significant transcriptomic changes in Tregs. We further identified specific effector signature of Tregs promoted by leukemic EVs. Leukemic EVs-driven Tregs were characterized by elevated expression of effector/tumor Treg markers CD39, CCR8, CD30, TNFR2, CCR4, TIGIT, IL21R and included two distinct, effector Treg (eTreg) subsets - CD30+CCR8hiTNFR2hi eTreg1 and CD39+TIGIThi eTreg2. Finally, we showed that costimulatory ligand 4-1BBL/CD137L, shuttled by leukemic EVs, promoted suppressive activity and effector phenotype of Tregs by regulating expression of receptors such as CD30 and TNFR2. Collectively, our work highlights the role of leukemic extracellular vesicles in stimulation of immunosuppressive regulatory T cells and leukemia growth. We postulate that targeting of Rab27a-dependent secretion of leukemic EVs may be a viable therapeutic approach in myeloid neoplasms. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: TSG101
non-EV: APOA1/ GM130
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MOLM-14
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
98
Cell count
2.80E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100,000
Wash: volume per pellet (ml)
60
Wash: time (min)
90
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100,000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
TSG101
Not detected contaminants
APOA1/ GM130
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
95
EV concentration
Yes
Particle yield
Yes, as number of particles per million cells 5.00E+07
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210187 2/5 Homo sapiens K562 DG Swatler, Julian 2022 50%

Study summary

Full title
All authors
Julian Swatler, Laura Turos-Korgul, Marta Brewinska-Olchowik, Sara De Biasi, Wioleta Dudka, Bac Viet Le, Agata Kominek, Salwador Cyranowski, Paulina Pilanc, Elyas Mohammadi, Dominik Cysewski, Ewa Kozlowska, Wioleta Grabowska-Pyrzewicz, Urszula Wojda, Grzegorz W Basak, Jakub Mieczkowski, Tomasz Skorski 10 , Andrea Cossarizza 11 , Katarzyna Piwocka
Journal
Blood advances
Abstract
Chronic and acute myeloid leukemia (CML, AML) evade immune system surveillance and induce immunosupp (show more...)Chronic and acute myeloid leukemia (CML, AML) evade immune system surveillance and induce immunosuppression by expanding pro-leukemic Foxp3+ regulatory T cells (Tregs). High levels of immunosuppressive Tregs predict inferior response to chemotherapy, leukemia relapse and shorter survival. However, mechanisms that promote Tregs in myeloid leukemias remain largely unexplored. Here, we identify leukemic extracellular vesicles (EVs) as drivers of effector, pro-leukemic Tregs. Using mouse model of CML-like disease, we found that Rab27a-dependent secretion of leukemic EVs promoted leukemia engraftment, which was associated with higher abundance of activated, immunosuppressive Tregs. Leukemic EVs attenuated mTOR-S6 and activated STAT5 signaling, as well as evoked significant transcriptomic changes in Tregs. We further identified specific effector signature of Tregs promoted by leukemic EVs. Leukemic EVs-driven Tregs were characterized by elevated expression of effector/tumor Treg markers CD39, CCR8, CD30, TNFR2, CCR4, TIGIT, IL21R and included two distinct, effector Treg (eTreg) subsets - CD30+CCR8hiTNFR2hi eTreg1 and CD39+TIGIThi eTreg2. Finally, we showed that costimulatory ligand 4-1BBL/CD137L, shuttled by leukemic EVs, promoted suppressive activity and effector phenotype of Tregs by regulating expression of receptors such as CD30 and TNFR2. Collectively, our work highlights the role of leukemic extracellular vesicles in stimulation of immunosuppressive regulatory T cells and leukemia growth. We postulate that targeting of Rab27a-dependent secretion of leukemic EVs may be a viable therapeutic approach in myeloid neoplasms. (hide)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
Protein markers
EV: CD63
non-EV: None
Proteomics
no
EV density (g/ml)
1.094
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
K562
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
98
Cell count
3.00E+08
Separation Method
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12.2
Sample volume (mL)
0.73
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100,000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
13
Pelleting: duration (min)
180
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100,000
Pelleting-wash: volume per pellet (mL)
13
Pelleting-wash: duration (min)
180
Pelleting-wash: speed (g)
SW 41 Ti
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
94
Particle yield
NA NA
EV210187 4/5 Homo sapiens Blood plasma qEV Swatler, Julian 2022 50%

Study summary

Full title
All authors
Julian Swatler, Laura Turos-Korgul, Marta Brewinska-Olchowik, Sara De Biasi, Wioleta Dudka, Bac Viet Le, Agata Kominek, Salwador Cyranowski, Paulina Pilanc, Elyas Mohammadi, Dominik Cysewski, Ewa Kozlowska, Wioleta Grabowska-Pyrzewicz, Urszula Wojda, Grzegorz W Basak, Jakub Mieczkowski, Tomasz Skorski 10 , Andrea Cossarizza 11 , Katarzyna Piwocka
Journal
Blood advances
Abstract
Chronic and acute myeloid leukemia (CML, AML) evade immune system surveillance and induce immunosupp (show more...)Chronic and acute myeloid leukemia (CML, AML) evade immune system surveillance and induce immunosuppression by expanding pro-leukemic Foxp3+ regulatory T cells (Tregs). High levels of immunosuppressive Tregs predict inferior response to chemotherapy, leukemia relapse and shorter survival. However, mechanisms that promote Tregs in myeloid leukemias remain largely unexplored. Here, we identify leukemic extracellular vesicles (EVs) as drivers of effector, pro-leukemic Tregs. Using mouse model of CML-like disease, we found that Rab27a-dependent secretion of leukemic EVs promoted leukemia engraftment, which was associated with higher abundance of activated, immunosuppressive Tregs. Leukemic EVs attenuated mTOR-S6 and activated STAT5 signaling, as well as evoked significant transcriptomic changes in Tregs. We further identified specific effector signature of Tregs promoted by leukemic EVs. Leukemic EVs-driven Tregs were characterized by elevated expression of effector/tumor Treg markers CD39, CCR8, CD30, TNFR2, CCR4, TIGIT, IL21R and included two distinct, effector Treg (eTreg) subsets - CD30+CCR8hiTNFR2hi eTreg1 and CD39+TIGIThi eTreg2. Finally, we showed that costimulatory ligand 4-1BBL/CD137L, shuttled by leukemic EVs, promoted suppressive activity and effector phenotype of Tregs by regulating expression of receptors such as CD30 and TNFR2. Collectively, our work highlights the role of leukemic extracellular vesicles in stimulation of immunosuppressive regulatory T cells and leukemia growth. We postulate that targeting of Rab27a-dependent secretion of leukemic EVs may be a viable therapeutic approach in myeloid neoplasms. (hide)
EV-METRIC
50% (82nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
qEV
Protein markers
EV: TSG101
non-EV: APOA1/ GM130
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
TSG101
Not detected contaminants
APOA1/ GM130
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
60
Particle yield
NA NA
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210187 5/5 Homo sapiens Blood plasma qEV Swatler, Julian 2022 38%

Study summary

Full title
All authors
Julian Swatler, Laura Turos-Korgul, Marta Brewinska-Olchowik, Sara De Biasi, Wioleta Dudka, Bac Viet Le, Agata Kominek, Salwador Cyranowski, Paulina Pilanc, Elyas Mohammadi, Dominik Cysewski, Ewa Kozlowska, Wioleta Grabowska-Pyrzewicz, Urszula Wojda, Grzegorz W Basak, Jakub Mieczkowski, Tomasz Skorski 10 , Andrea Cossarizza 11 , Katarzyna Piwocka
Journal
Blood advances
Abstract
Chronic and acute myeloid leukemia (CML, AML) evade immune system surveillance and induce immunosupp (show more...)Chronic and acute myeloid leukemia (CML, AML) evade immune system surveillance and induce immunosuppression by expanding pro-leukemic Foxp3+ regulatory T cells (Tregs). High levels of immunosuppressive Tregs predict inferior response to chemotherapy, leukemia relapse and shorter survival. However, mechanisms that promote Tregs in myeloid leukemias remain largely unexplored. Here, we identify leukemic extracellular vesicles (EVs) as drivers of effector, pro-leukemic Tregs. Using mouse model of CML-like disease, we found that Rab27a-dependent secretion of leukemic EVs promoted leukemia engraftment, which was associated with higher abundance of activated, immunosuppressive Tregs. Leukemic EVs attenuated mTOR-S6 and activated STAT5 signaling, as well as evoked significant transcriptomic changes in Tregs. We further identified specific effector signature of Tregs promoted by leukemic EVs. Leukemic EVs-driven Tregs were characterized by elevated expression of effector/tumor Treg markers CD39, CCR8, CD30, TNFR2, CCR4, TIGIT, IL21R and included two distinct, effector Treg (eTreg) subsets - CD30+CCR8hiTNFR2hi eTreg1 and CD39+TIGIThi eTreg2. Finally, we showed that costimulatory ligand 4-1BBL/CD137L, shuttled by leukemic EVs, promoted suppressive activity and effector phenotype of Tregs by regulating expression of receptors such as CD30 and TNFR2. Collectively, our work highlights the role of leukemic extracellular vesicles in stimulation of immunosuppressive regulatory T cells and leukemia growth. We postulate that targeting of Rab27a-dependent secretion of leukemic EVs may be a viable therapeutic approach in myeloid neoplasms. (hide)
EV-METRIC
38% (70th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
leukemia
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
qEV
Protein markers
EV: TSG101
non-EV: APOA1/ GM130
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
TSG101
Not detected contaminants
APOA1/ GM130
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
60
1 - 5 of 5
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV210187
species
Homo sapiens
sample type
Cell culture
Cell culture
Cell culture
Blood plasma
Blood plasma
cell type
K562
MOLM-14
K562
NA
NA
medium
EV-depleted medium
EV-depleted medium
EV-depleted medium
NA
NA
condition
Control condition
Control condition
Control condition
Control condition
leukemia
separation protocol
(d)(U)C
(d)(U)C
DG
qEV
qEV
Exp. nr.
1
3
2
4
5
EV-METRIC %
78
67
50
50
38