Search > Results

You searched for: EV200059 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV200059 1/1 Homo sapiens Primary neurospheres (d)(U)C
qEV
Bertolini, Irene 2020 75%

Study summary

Full title
All authors
Irene Bertolini, Alessandra Maria Storaci, Andrea Terrasi, Andrea Di Cristofori, Marco Locatelli, Manuela Caroli, Stefano Ferrero, Dario C Altieri, Valentina Vaira
Journal
Mol Cancer Res
Abstract
The ATP6V1G1 subunit (V1G1) of the vacuolar proton ATPase (V-ATPase) pump is crucial for glioma stem (show more...)The ATP6V1G1 subunit (V1G1) of the vacuolar proton ATPase (V-ATPase) pump is crucial for glioma stem cells (GSC) maintenance and in vivo tumorigenicity. Moreover, V-ATPase reprograms the tumor microenvironment through acidification and release of extracellular vesicles (EV). Therefore, we investigated the role of V1G1 in GSC small EVs and their effects on primary brain cultures. To this end, small EVs were isolated from patients-derived GSCs grown as neurospheres (NS) with high (V1G1HIGH-NS) or low (V1G1LOW-NS) V1G1 expression and analyzed for V-ATPase subunits presence, miRNA contents, and cellular responses in recipient cultures. Our results show that NS-derived small EVs stimulate proliferation and motility of recipient cells, with small EV derived from V1G1HIGH-NS showing the most pronounced activity. This involved activation of ERK1/2 signaling, in a response reversed by V-ATPase inhibition in NS-producing small EV. The miRNA profile of V1G1HIGH-NS-derived small EVs differed significantly from that of V1G1LOW-NS, which included miRNAs predicted to target MAPK/ERK signaling. Mechanistically, forced expression of a MAPK-targeting pool of miRNAs in recipient cells suppressed MAPK/ERK pathway activation and blunted the prooncogenic effects of V1G1HIGH small EV. These findings propose that the GSC influences the brain milieu through a V1G1-coordinated EVs release of MAPK/ERK-targeting miRNAs. Interfering with V-ATPase activity could prevent ERK-dependent oncogenic reprogramming of the microenvironment, potentially hampering local GBM infiltration. IMPLICATIONS: Our data identify a novel molecular mechanism of gliomagenesis specific of the GBM stem cell niche, which coordinates a V-ATPase-dependent reprogramming of the brain microenvironment through the release of specialized EVs. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
glioblastoma
Focus vesicles
Other / small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Commercial method
Protein markers
EV: TSG101/ CD63/ CD81/ Clathrin/ ATP6V1G1/ CD9
non-EV: Calnexin/ Argonaute2
Proteomics
no
EV density (g/ml)
1.13-1.19
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Primary neurospheres
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Density gradient
Only used for validation of main results
Yes
Type
Continuous
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
0.5
Orientation
Bottom-up
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
20
Pelleting: duration (min)
120
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
100000
Pelleting-wash: volume per pellet (mL)
20
Pelleting-wash: duration (min)
120
Pelleting-wash: speed (g)
Type 50.2 Ti
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
CD9/ CD63/ Clathrin/ TSG101
Not detected contaminants
Calnexin/ Argonaute2
Flow cytometry specific beads
Detected EV-associated proteins
CD9/ CD81
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
70-250
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 4.00E+07
EM
EM-type
Transmission-EM/ Immuno-EM
EM protein
ATP6V1G1
Image type
Close-up
Report size (nm)
50-250
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV200059
species
Homo sapiens
sample type
Cell culture
cell type
Primary neurospheres
condition
glioblastoma
separation protocol
(d)(U)C
qEV
Exp. nr.
1
EV-METRIC %
75