Search > Results
You searched for: EV190011 (EV-TRACK ID)
Showing 1 - 5 of 5
Showing 1 - 5 of 5
Details | EV-TRACK ID | Experiment nr. | Species | Sample type | Separation protocol | First author | Year | EV-METRIC |
---|---|---|---|---|---|---|---|---|
EV190011 | 4/5 | Mus musculus | Tissue |
DG (d)(U)C |
Cianciaruso C | 2019 | 100% | |
Study summaryFull title
All authors
Cianciaruso C, Beltraminelli T, Duval F, Nassiri S, Hamelin R, Mozes A, Gallart-Ayala H, Ceada Torres G, Torchia B, Ries CH, Ivanisevic J, De Palma M
Journal
Cell Rep
Abstract
Extracellular vesicles (EVs), including exosomes, modulate multiple aspects of cancer biology. Tumor (show more...)
EV-METRIC
100% (92nd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Tissue
Sample origin
MC38 tumor
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Protein markers
EV: / TSG101/ CD63/ TBXAS1/ MRC1/ CD81/ COX1/ GAPDH/ CD68/ Alix/ actin-beta/ HER2/ CD9/ CD11b
non-EV: Calnexin/ Gp96 Proteomics
yes
EV density (g/ml)
1.14
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
Tissue
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
35
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
134,000
Density gradient
Only used for validation of main results
Yes
Type
Continuous
Lowest density fraction
17%
Highest density fraction
78%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
0.1
Orientation
Bottom-up
Rotor type
SW 40 Ti
Speed (g)
100000
Duration (min)
960
Fraction volume (mL)
2
Fraction processing
Centrifugation
Pelleting: volume per fraction
35
Pelleting: duration (min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
134000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
Alix/ CD9/ CD63/ TSG101/ CD81/ GAPDH/ MRC1/ CD68/ actin-beta/ HER2/ TBXAS1/ COX1
Detected contaminants
Calnexin/ Gp96
Flow cytometry specific beads
Detected EV-associated proteins
CD11b/ CD9
Flow cytometry
Type of Flow cytometry
Attune NxT apparatus
Hardware adaptation to ~100nm EV's
Acquisition settings were optimized for detection of EV populations carrying green, red or near-infrared fluorescence, or combination of those. The conventional blue side scatter (SSC, 488 nm) was rep
Detected EV-associated proteins
Proteomics database
No
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
190
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV190011 | 5/5 | Mus musculus | Tissue |
DG (d)(U)C |
Cianciaruso C | 2019 | 100% | |
Study summaryFull title
All authors
Cianciaruso C, Beltraminelli T, Duval F, Nassiri S, Hamelin R, Mozes A, Gallart-Ayala H, Ceada Torres G, Torchia B, Ries CH, Ivanisevic J, De Palma M
Journal
Cell Rep
Abstract
Extracellular vesicles (EVs), including exosomes, modulate multiple aspects of cancer biology. Tumor (show more...)
EV-METRIC
100% (92nd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Tissue
Sample origin
E0771 tumor
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Protein markers
EV: MRC1/ COX1/ CD9/ TBXAS1
non-EV: Gp96 Proteomics
yes
EV density (g/ml)
1.14
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
Tissue
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
35
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
134,000
Density gradient
Type
Continuous
Lowest density fraction
17%
Highest density fraction
77%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
0.1
Orientation
Bottom-up
Rotor type
SW 40 Ti
Speed (g)
100000
Duration (min)
960
Fraction volume (mL)
2
Fraction processing
Centrifugation
Pelleting: volume per fraction
35
Pelleting: duration (min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
134000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9/ MRC1/ COX1/ TBXAS1
Detected contaminants
Gp96
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
180
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV190011 | 1/5 | Mus musculus | MC38 | (d)(U)C | Cianciaruso C | 2019 | 78% | |
Study summaryFull title
All authors
Cianciaruso C, Beltraminelli T, Duval F, Nassiri S, Hamelin R, Mozes A, Gallart-Ayala H, Ceada Torres G, Torchia B, Ries CH, Ivanisevic J, De Palma M
Journal
Cell Rep
Abstract
Extracellular vesicles (EVs), including exosomes, modulate multiple aspects of cancer biology. Tumor (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: TSG101/ Syntenin1/ CD63/ CD81/ GAPDH/ Alix/ vinculin/ actin-beta/ HER2/ CD9/ CD11b
non-EV: Calnexin/ Gp96 Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
MC38
EV-harvesting Medium
Serum-containing, but physical separation of serum EVs and secreted EVs (e.g. Bioreactor flask)
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
35
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
134,000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD81/ vinculin/ GAPDH/ Alix/ TSG101/ Syntenin1/ actin-beta/ CD9/ CD63
Detected contaminants
Calnexin/ Gp96
Flow cytometry specific beads
Detected EV-associated proteins
HER2/ CD11b/ CD9
Flow cytometry
Type of Flow cytometry
Attune NxT apparatus
Hardware adaptation to ~100nm EV's
Acquisition settings were optimized for detection of EV populations carrying green, red or near-infrared fluorescence, or combination of those. The conventional blue side scatter (SSC, 488 nm) was rep
Detected EV-associated proteins
HER2
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
150
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV190011 | 3/5 | Mus musculus | Bone marrow-derived macrophages | (d)(U)C | Cianciaruso C | 2019 | 78% | |
Study summaryFull title
All authors
Cianciaruso C, Beltraminelli T, Duval F, Nassiri S, Hamelin R, Mozes A, Gallart-Ayala H, Ceada Torres G, Torchia B, Ries CH, Ivanisevic J, De Palma M
Journal
Cell Rep
Abstract
Extracellular vesicles (EVs), including exosomes, modulate multiple aspects of cancer biology. Tumor (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: / TSG101/ CD63/ MRC1/ CD81/ GAPDH/ CD68/ Alix/ CD9
non-EV: Gp96 Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
Bone marrow-derived macrophages
EV-harvesting Medium
Serum-containing, but physical separation of serum EVs and secreted EVs (e.g. Bioreactor flask)
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
35
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
134,000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD81/ MRC1/ GAPDH/ CD63/ TSG101/ CD9/ CD68/ MRC1/ Alix
Not detected EV-associated proteins
Not detected contaminants
Gp96
Flow cytometry
Type of Flow cytometry
Attune NxT apparatus
Hardware adaptation to ~100nm EV's
Acquisition settings were optimized for detection of EV populations carrying green, red or near-infrared fluorescence, or combination of those. The conventional blue side scatter (SSC, 488 nm) was rep
Detected EV-associated proteins
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
140
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV190011 | 2/5 | Mus musculus | E0771 | (d)(U)C | Cianciaruso C | 2019 | 44% | |
Study summaryFull title
All authors
Cianciaruso C, Beltraminelli T, Duval F, Nassiri S, Hamelin R, Mozes A, Gallart-Ayala H, Ceada Torres G, Torchia B, Ries CH, Ivanisevic J, De Palma M
Journal
Cell Rep
Abstract
Extracellular vesicles (EVs), including exosomes, modulate multiple aspects of cancer biology. Tumor (show more...)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: CD81/ Alix/ CD9/ GAPDH
non-EV: Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
E0771
EV-harvesting Medium
Serum-containing, but physical separation of serum EVs and secreted EVs (e.g. Bioreactor flask)
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
35
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
134,000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
Alix/ CD9/ GAPDH
Not detected EV-associated proteins
CD81
Characterization: Lipid analysis
No
|
||||||||
1 - 5 of 5 |
EV-TRACK ID | EV190011 | ||||
---|---|---|---|---|---|
species | Mus musculus | ||||
sample type | Tissue | Tissue | Cell culture | Cell culture | Cell culture |
cell type | NA | NA | MC38 | Bone marrow-derived macrophages | E0771 |
medium | NA | NA | Serum-containing but physical separation of serum EVs and secreted EVs (e.g. Bioreactor flask) | Serum-containing but physical separation of serum EVs and secreted EVs (e.g. Bioreactor flask) | Serum-containing but physical separation of serum EVs and secreted EVs (e.g. Bioreactor flask) |
condition | MC38 tumor | E0771 tumor | Control condition | Control condition | Control condition |
separation protocol | DG (d)(U)C | DG (d)(U)C | (d)(U)C | (d)(U)C | (d)(U)C |
Exp. nr. | 4 | 5 | 1 | 3 | 2 |
EV-METRIC % | 100 | 100 | 78 | 78 | 44 |