Search > Results

You searched for: EV150103 (EV-TRACK ID)

Showing 1 - 7 of 7

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV150103 7/7 Homo sapiens HUVEC (d)(U)C Dieudé M 2015 55%

Study summary

Full title
All authors
Dieudé M, Bell C, Turgeon J, Beillevaire D, Pomerleau L, Yang B, Hamelin K, Qi S, Pallet N, Béland C, Dhahri W, Cailhier JF, Rousseau M, Duchez AC, Lévesque T, Lau A, Rondeau C, Gingras D, Muruve D, Rivard A, Cardinal H, Perreault C, Desjardins M, Boilard É, Thibault P, Hébert MJ
Journal
J Transl Med
Abstract
Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rej (show more...)Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)-incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation. (hide)
EV-METRIC
55% (88th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Apoptosis
Focus vesicles
apoptotic exosome-like vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
127.9 (pelleting)
Protein markers
EV: LG3/ Fibronectin/ proteasome-alpha3/ Syntenin/ TCTP
non-EV: Tubulin/ GM130
Proteomics
yes
Show all info
Study aim
Function, Biomarker, Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HUVEC
EV-harvesting Medium
Serum free medium
Cell viability (%)
NA
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Equal to or above 150,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
1080
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
200000
Pelleting: adjusted k-factor
127.9
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
300
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Syntenin, Fibronectin, TCTP, proteasome-alpha3, LG3
Not detected contaminants
GM130, Tubulin
Proteomics database
Yes
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
BDCantoII Special Order Research Product
Hardware adjustment
This high sensitivity Flow cytometer (hsFCM) is equipped with a small particle option. The forward scatter (FSC) on this dedicated equipment is coupled to a photomultiplier tube (PMT) with a 488 nm solid state;100mW output blue laser (rather than the conventional 20 mW);and includes a 633nmHeNe;20mW output red laser and a 405 nm solid state diode;50mW output violet laser. The hsFCM includes a FSC-PMT and a Fourier optical transformation unit;which reduces the background noise and increases the angle of diffusion;therby enhancing the detection of small-diameter particles.
Calibration bead size
0.09,0.45,0.84,1,3.2
Report type
Median
Reported size (nm)
100-200
EV concentration
Yes
Particle yield
3.50E+07 particles/million cells
EM
EM-type
Transmission-EM/ Immune-EM
EM protein
LG3;proteasome-alpha3
Image type
Close-up, Wide-field
EV150103 5/7 Homo sapiens HUVEC (d)(U)C Dieudé M 2015 44%

Study summary

Full title
All authors
Dieudé M, Bell C, Turgeon J, Beillevaire D, Pomerleau L, Yang B, Hamelin K, Qi S, Pallet N, Béland C, Dhahri W, Cailhier JF, Rousseau M, Duchez AC, Lévesque T, Lau A, Rondeau C, Gingras D, Muruve D, Rivard A, Cardinal H, Perreault C, Desjardins M, Boilard É, Thibault P, Hébert MJ
Journal
J Transl Med
Abstract
Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rej (show more...)Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)-incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation. (hide)
EV-METRIC
44% (85th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Apoptosis
Focus vesicles
apoptotic body
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
127.9 (pelleting)
Protein markers
EV: Tubulin/ TCTP/ Fibronectin/ Syntenin/ LG3/ GM130
non-EV: None
Proteomics
yes
Show all info
Study aim
Function, Biomarker, Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HUVEC
EV-harvesting Medium
Serum free medium
Cell viability (%)
NA
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
1080
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
200000
Pelleting: adjusted k-factor
127.9
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
2000
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Syntenin, Fibronectin, TCTP, GM130, Tubulin, LG3
Proteomics database
Yes
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
BDCantoII Special Order Research Product
Hardware adjustment
This high sensitivity Flow cytometer (hsFCM) is equipped with a small particle option. The forward scatter (FSC) on this dedicated equipment is coupled to a photomultiplier tube (PMT) with a 488 nm solid state;100mW output blue laser (rather than the conventional 20 mW);and includes a 633nmHeNe;20mW output red laser and a 405 nm solid state diode;50mW output violet laser. The hsFCM includes a FSC-PMT and a Fourier optical transformation unit;which reduces the background noise and increases the angle of diffusion;therby enhancing the detection of small-diameter particles.
Calibration bead size
0.09,0.45,0.84,1,3.2
Report type
Median
Reported size (nm)
100-200
EV concentration
Yes
Particle yield
3.50E+07 particles/million cells
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV150103 4/7 Mus musculus Serum (d)(U)C Dieudé M 2015 22%

Study summary

Full title
All authors
Dieudé M, Bell C, Turgeon J, Beillevaire D, Pomerleau L, Yang B, Hamelin K, Qi S, Pallet N, Béland C, Dhahri W, Cailhier JF, Rousseau M, Duchez AC, Lévesque T, Lau A, Rondeau C, Gingras D, Muruve D, Rivard A, Cardinal H, Perreault C, Desjardins M, Boilard É, Thibault P, Hébert MJ
Journal
J Transl Med
Abstract
Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rej (show more...)Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)-incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation. (hide)
EV-METRIC
22% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Acute kidney injury model
Focus vesicles
exosome-like vesicle, membrane vesicle, nanovesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
127.9 (pelleting)
Protein markers
EV: LG3/ proteasome-alpha3
non-EV: None
Proteomics
no
Show all info
Study aim
Function, Biomarker, Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Equal to or above 150,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
1080
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
200000
Pelleting: adjusted k-factor
127.9
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
LG3
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM/ Immune-EM
EM protein
proteasome-alpha3
Image type
Close-up, Wide-field
EV150103 1/7 Mus musculus primary aorta-derived endothelial cells (d)(U)C Dieudé M 2015 11%

Study summary

Full title
All authors
Dieudé M, Bell C, Turgeon J, Beillevaire D, Pomerleau L, Yang B, Hamelin K, Qi S, Pallet N, Béland C, Dhahri W, Cailhier JF, Rousseau M, Duchez AC, Lévesque T, Lau A, Rondeau C, Gingras D, Muruve D, Rivard A, Cardinal H, Perreault C, Desjardins M, Boilard É, Thibault P, Hébert MJ
Journal
J Transl Med
Abstract
Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rej (show more...)Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)-incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Apoptosis
Focus vesicles
apoptotic exosome-like vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
127.9 (pelleting)
Protein markers
EV: LG3
non-EV: None
Proteomics
no
Show all info
Study aim
Function, Biomarker, Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
primary aorta-derived endothelial cells
EV-harvesting Medium
Serum free medium
Cell viability (%)
NA
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Equal to or above 150,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
1080
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
200000
Pelleting: adjusted k-factor
127.9
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
LG3
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EV150103 2/7 Mus musculus primary aorta-derived endothelial cells (d)(U)C Dieudé M 2015 11%

Study summary

Full title
All authors
Dieudé M, Bell C, Turgeon J, Beillevaire D, Pomerleau L, Yang B, Hamelin K, Qi S, Pallet N, Béland C, Dhahri W, Cailhier JF, Rousseau M, Duchez AC, Lévesque T, Lau A, Rondeau C, Gingras D, Muruve D, Rivard A, Cardinal H, Perreault C, Desjardins M, Boilard É, Thibault P, Hébert MJ
Journal
J Transl Med
Abstract
Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rej (show more...)Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)-incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Apoptosis
Focus vesicles
apoptotic body
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
127.9 (pelleting)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function, Biomarker, Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
primary aorta-derived endothelial cells
EV-harvesting Medium
Serum free medium
Cell viability (%)
NA
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
1080
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
200000
Pelleting: adjusted k-factor
127.9
Characterization: Protein analysis
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EV150103 3/7 Mus musculus Serum (d)(U)C Dieudé M 2015 11%

Study summary

Full title
All authors
Dieudé M, Bell C, Turgeon J, Beillevaire D, Pomerleau L, Yang B, Hamelin K, Qi S, Pallet N, Béland C, Dhahri W, Cailhier JF, Rousseau M, Duchez AC, Lévesque T, Lau A, Rondeau C, Gingras D, Muruve D, Rivard A, Cardinal H, Perreault C, Desjardins M, Boilard É, Thibault P, Hébert MJ
Journal
J Transl Med
Abstract
Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rej (show more...)Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)-incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation. (hide)
EV-METRIC
11% (40th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
exosome-like vesicle, membrane vesicle, nanovesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
127.9 (pelleting)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function, Biomarker, Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Equal to or above 150,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
1080
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
200000
Pelleting: adjusted k-factor
127.9
Characterization: Protein analysis
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Close-up
EV150103 6/7 Mus musculus Serum (d)(U)C Dieudé M 2015 11%

Study summary

Full title
All authors
Dieudé M, Bell C, Turgeon J, Beillevaire D, Pomerleau L, Yang B, Hamelin K, Qi S, Pallet N, Béland C, Dhahri W, Cailhier JF, Rousseau M, Duchez AC, Lévesque T, Lau A, Rondeau C, Gingras D, Muruve D, Rivard A, Cardinal H, Perreault C, Desjardins M, Boilard É, Thibault P, Hébert MJ
Journal
J Transl Med
Abstract
Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rej (show more...)Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)-incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation. (hide)
EV-METRIC
11% (40th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Ischemic hindlimb model
Focus vesicles
exosome-like vesicle, nanovesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
127.9 (pelleting)
Protein markers
EV: LG3
non-EV: None
Proteomics
no
Show all info
Study aim
Function, Biomarker, Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Equal to or above 150,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
1080
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
200000
Pelleting: adjusted k-factor
127.9
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
LG3
Characterization: Lipid analysis
No
1 - 7 of 7
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV150103
species
Homo
sapiens
Homo
sapiens
Mus
musculus
Mus
musculus
Mus
musculus
Mus
musculus
Mus
musculus
sample type
Cell
culture
Cell
culture
Serum
Cell
culture
Cell
culture
Serum
Serum
cell type
HUVEC
HUVEC
NA
primary
aorta-derived
endothelial
cells
primary
aorta-derived
endothelial
cells
NA
NA
medium
Serum
free
medium
Serum
free
medium
NA
Serum
free
medium
Serum
free
medium
NA
NA
condition
Apoptosis
Apoptosis
Acute
kidney
injury
model
Apoptosis
Apoptosis
Control
condition
Ischemic
hindlimb
model
separation protocol
(d)(U)C
(d)(U)C
(d)(U)C
(d)(U)C
(d)(U)C
(d)(U)C
(d)(U)C
EV subtype
No
No
NA
No
No
NA
NA
vesicle related term
apoptotic
exosome-like
vesicle
apoptotic
body
exosome-like vesicle
membrane
vesicle
nanovesicle
apoptotic
exosome-like
vesicle
apoptotic
body
exosome-like vesicle
membrane
vesicle
nanovesicle
exosome-like vesicle
nanovesicle
Exp. nr.
7
5
4
1
2
3
6
EV-METRIC %
55
44
22
11
11
11
11