Search > Results

You searched for: 2019 (Year of publication)

Showing 51 - 100 of 230

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Experiment number
  • Experiments differ in Separation protocol
Experiment number
  • Experiments differ in Species, Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample origin
Experiment number
  • Experiments differ in Sample type, Isolation method
Experiment number
  • Experiments differ in Sample type, Isolation method
Experiment number
  • Experiments differ in Sample type, Isolation method
Experiment number
  • Experiments differ in Sample type, Isolation method
Experiment number
  • Experiments differ in Sample type, Vesicle type, Culture condition
Experiment number
  • Experiments differ in Sample type, Vesicle type, Culture condition
Experiment number
  • Experiments differ in Sample type, Vesicle type, Culture condition
Experiment number
  • Experiments differ in Sample type, Vesicle type, Culture condition
Experiment number
  • Experiments differ in Sample type, Vesicle type, Culture condition
Experiment number
  • Experiments differ in Sample type, Vesicle type, Culture condition
Experiment number
  • Experiments differ in Sample type, Vesicle type, Culture condition
Experiment number
  • Experiments differ in Sample type, Vesicle type, Culture condition
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample origin
Details EV-TRACK ID Experiment nr. Species Sample type separation protocol First author Year EV-METRIC
EV190007 5/5 Homo sapiens Urine (d)(U)C
Exiqon miRCURY Exosome Isolation Kit
UF
Mussack V 2019 75%

Study summary

Full title
All authors
Mussack V, Wittmann G, Pfaffl MW.
Journal
Biomol Detect Quanti
Abstract
Small extracellular vesicles (EVs) are 50-200 nm sized mediators in intercellular communication th (show more...)Small extracellular vesicles (EVs) are 50-200 nm sized mediators in intercellular communication that reflect both physiological and pathophysiological changes of their parental cells. Thus, EVs hold great potential for biomarker detection. However, reliable purification methods for the downstream screening of the microRNA (miRNA) cargo carried within urinary EVs by small RNA sequencing have yet to be established. To address this knowledge gap, RNA extracted from human urinary EVs obtained by five different urinary EV purification methods (spin column chromatography, immunoaffinity, membrane affinity, precipitation and ultracentrifugation combined with density gradient) was analyzed by small RNA sequencing. Urinary EVs were further characterized by nanoparticle tracking analysis, Western blot analysis and transmission electron microscopy. Comprehensive EV characterization established significant method-dependent differences in size and concentration as well as variances in protein composition of isolated vesicles. Even though all purification methods captured enough total RNA to allow small RNA sequencing, method-dependent differences were also observed with respect to library sizes, mapping distributions, number of miRNA reads and diversity of transcripts. Whereas EVs obtained by immunoaffinity yielded the purest subset of small EVs, highly comparable with results attained by ultracentrifugation combined with density gradient, precipitation and membrane affinity, sample purification by spin column chromatography indicated a tendency to isolate different subtypes of small EVs, which might also carry a distinct subset of miRNAs. Based on our results, different EV purification methods seem to preferentially isolate different subtypes of EVs with varying efficiencies. As a consequence, sequencing experiments and resulting miRNA profiles were also affected. Hence, the selection of a specific EV isolation method has to satisfy the respective research question and should be well considered. In strict adherence with the MISEV (minimal information for studies of extracellular vesicles) guidelines, the importance of a combined evaluation of biophysical and proteomic EV characteristics alongside transcriptomic results was clearly demonstrated in this present study. (hide)
EV-METRIC
75% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Exiqon miRCURY Exosome Isolation Kit + UF
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ Syntenin/ EPCAM/ HSP70/ CD9
non-EV: Calnexin/ Tamm-Horsfall protein
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Urine
Sample Condition
Control condition
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
Other;Exiqon miRCURY Exosome Isolation Kit
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix/ CD81
Not detected EV-associated proteins
HSP70/ EPCAM/ Syntenin/ CD63
Detected contaminants
Tamm-Horsfall protein
Not detected contaminants
Calnexin
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
145
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV200028 1/3 Rattus norvegicus Serum (d)(U)C F Fricke 2019 67%

Study summary

Full title
All authors
F Fricke, J Gebert, J Kopitz, K Plaschke
Journal
Cell Mol Neurobiol
Abstract
Peripheral inflammation induced by endotoxemia or surgical stress induces neuroinflammation thereby (show more...)Peripheral inflammation induced by endotoxemia or surgical stress induces neuroinflammation thereby causing neurological symptoms ranging from sickness behavior to delirium. Thus, proinflammatory signaling must be operative between the periphery and the central nervous system (CNS). In the present study, we tested whether nanometer-sized extracellular vesicles (EVs) that were produced during the peripheral inflammatory process have the capacity to induce neuroinflammation. Conditions of endotoxemia or surgical intervention were simulated in rats by lipopolysaccharide (LPS) injection or partial hepatectomy (HpX). EVs were concentrated from these animals and tested for their proinflammatory action (I) in a microglial cell line and (II) by intracerebroventricular and (III) by intravenous injections into healthy rats. EVs from both conditions induced the secretion of cytokines from the glial cell line. Intracerebroventricular injection of the EVs caused the release of inflammatory cytokines to the cerebrospinal fluid indicating their pro-neuroinflammatory capacity. Finally, proinflammatory EVs were shown to pass the blood-brain barrier and induce neuroinflammation after their intravenous injection. Based on these data, we suggest that EV-associated proinflammatory signaling contributes to the induction of neuroinflammation in endotoxemia and peripheral surgical stress. Preliminary results suggest that peripheral cholinergic signals might be involved in the control of proinflammatory EV-mediated signaling from the periphery to the brain. (hide)
EV-METRIC
67% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: Alix/ CD63/ CD9
non-EV: ApoA1
Proteomics
no
Show all info
Study aim
Function/Mechanism of uptake/transfer
Sample
Species
Rattus norvegicus
Sample Type
Serum
Sample Condition
Control condition
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
TLA-100.2
Pelleting: speed (g)
120000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Detected EV-associated proteins
CD9/ CD63/ Alix
Not detected contaminants
ApoA1
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
107
EM
EM-type
Transmission-EM
Image type
Wide-field
EV200028 2/3 Rattus norvegicus Serum (d)(U)C F Fricke 2019 67%

Study summary

Full title
All authors
F Fricke, J Gebert, J Kopitz, K Plaschke
Journal
Cell Mol Neurobiol
Abstract
Peripheral inflammation induced by endotoxemia or surgical stress induces neuroinflammation thereby (show more...)Peripheral inflammation induced by endotoxemia or surgical stress induces neuroinflammation thereby causing neurological symptoms ranging from sickness behavior to delirium. Thus, proinflammatory signaling must be operative between the periphery and the central nervous system (CNS). In the present study, we tested whether nanometer-sized extracellular vesicles (EVs) that were produced during the peripheral inflammatory process have the capacity to induce neuroinflammation. Conditions of endotoxemia or surgical intervention were simulated in rats by lipopolysaccharide (LPS) injection or partial hepatectomy (HpX). EVs were concentrated from these animals and tested for their proinflammatory action (I) in a microglial cell line and (II) by intracerebroventricular and (III) by intravenous injections into healthy rats. EVs from both conditions induced the secretion of cytokines from the glial cell line. Intracerebroventricular injection of the EVs caused the release of inflammatory cytokines to the cerebrospinal fluid indicating their pro-neuroinflammatory capacity. Finally, proinflammatory EVs were shown to pass the blood-brain barrier and induce neuroinflammation after their intravenous injection. Based on these data, we suggest that EV-associated proinflammatory signaling contributes to the induction of neuroinflammation in endotoxemia and peripheral surgical stress. Preliminary results suggest that peripheral cholinergic signals might be involved in the control of proinflammatory EV-mediated signaling from the periphery to the brain. (hide)
EV-METRIC
67% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
LPS
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: Alix/ CD63/ CD9
non-EV: ApoA1
Proteomics
no
Show all info
Study aim
Function/Mechanism of uptake/transfer
Sample
Species
Rattus norvegicus
Sample Type
Serum
Sample Condition
LPS
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
TLA-100.2
Pelleting: speed (g)
120000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Detected EV-associated proteins
CD9/ CD63/ Alix
Not detected contaminants
ApoA1
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
106
EM
EM-type
Transmission-EM
Image type
Wide-field
EV200028 3/3 Rattus norvegicus Serum (d)(U)C F Fricke 2019 67%

Study summary

Full title
All authors
F Fricke, J Gebert, J Kopitz, K Plaschke
Journal
Cell Mol Neurobiol
Abstract
Peripheral inflammation induced by endotoxemia or surgical stress induces neuroinflammation thereby (show more...)Peripheral inflammation induced by endotoxemia or surgical stress induces neuroinflammation thereby causing neurological symptoms ranging from sickness behavior to delirium. Thus, proinflammatory signaling must be operative between the periphery and the central nervous system (CNS). In the present study, we tested whether nanometer-sized extracellular vesicles (EVs) that were produced during the peripheral inflammatory process have the capacity to induce neuroinflammation. Conditions of endotoxemia or surgical intervention were simulated in rats by lipopolysaccharide (LPS) injection or partial hepatectomy (HpX). EVs were concentrated from these animals and tested for their proinflammatory action (I) in a microglial cell line and (II) by intracerebroventricular and (III) by intravenous injections into healthy rats. EVs from both conditions induced the secretion of cytokines from the glial cell line. Intracerebroventricular injection of the EVs caused the release of inflammatory cytokines to the cerebrospinal fluid indicating their pro-neuroinflammatory capacity. Finally, proinflammatory EVs were shown to pass the blood-brain barrier and induce neuroinflammation after their intravenous injection. Based on these data, we suggest that EV-associated proinflammatory signaling contributes to the induction of neuroinflammation in endotoxemia and peripheral surgical stress. Preliminary results suggest that peripheral cholinergic signals might be involved in the control of proinflammatory EV-mediated signaling from the periphery to the brain. (hide)
EV-METRIC
67% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
HpX
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: Alix/ CD63/ CD9
non-EV: ApoA1
Proteomics
no
Show all info
Study aim
Function/Mechanism of uptake/transfer
Sample
Species
Rattus norvegicus
Sample Type
Serum
Sample Condition
HpX
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
TLA-100.2
Pelleting: speed (g)
120000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Detected EV-associated proteins
Alix/ CD9/ CD63
Not detected contaminants
ApoA1
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
109
EM
EM-type
Transmission-EM
Image type
Wide-field
EV190098 1/3 Mus musculus Cell culture supernatant (d)(U)C Izabela Papiewska-Pająk 2019 67%

Study summary

Full title
All authors
Izabela Papiewska-Pająk, Damian Krzyżanowski, Maria Katela, Romain Rivet, Sylwia Michlewska, Patrycja Przygodzka, M Anna Kowalska, Stéphane Brézillon
Journal
Cells
Abstract
The transcription factor Snail triggers epithelial-to-mesenchymal transition (EMT), endowing cancer (show more...)The transcription factor Snail triggers epithelial-to-mesenchymal transition (EMT), endowing cancer cells with invasive properties during tumor progression. Extracellular vesicles (EVs) released from cancer cells at various stages of cancer progression are known to influence the tumor pre-metastatic niche and metastatic potential. The aim of this study was to analyze the effect of Snail on murine colon adenocarcinoma cells (MC38 line) and on the characteristics of their EVs. Stable clones of Snail-overexpressing MC38 cells were investigated in vitro versus Mock cells. Increased expression of matrix metalloproteinase MMP-14 and augmented activity of MMP-9 and -14 were observed in Snail-MC38 cells. There was no change in the transcriptomic profile of proteoglycans in Snail-MC38 cells; however, the protein level of Glypican-1 (GPC1) was enhanced in EVs released from those cells. Our finding that GPC1 protein level was enhanced in EVs released from MC38 cells that overexpressed Snail and were in an early EMT stage might explain the specificity of the GPC1 biomarker in colon cancer diagnosis. Further, our data suggest that Snail, by changing the level of GPC1 on EVs released by colon cancer cells, may affect the generation of a distant premetastatic niche and metastatic organotropism in colon adenocarcinoma. (hide)
EV-METRIC
67% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
MC38-pcDNA
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: ANXA5/ HSP70/ Alix
non-EV: cytochrome c
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Sample Condition
MC38-pcDNA
EV-producing cells
MC-38
EV-harvesting Medium
Serum free medium
Cell viability
Yes
Cell viability (%)
Yes
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
22.5
Wash: time (min)
90
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
ANXA5/ HSP70/ Alix
Not detected contaminants
cytochrome c
Characterization: Particle analysis
DLS
Report type
Size range/distribution
Reported size (nm)
100-500
EM
EM-type
Transmission-EM
Image type
Wide-field
EV190098 2/3 Mus musculus Cell culture supernatant (d)(U)C Izabela Papiewska-Pająk 2019 67%

Study summary

Full title
All authors
Izabela Papiewska-Pająk, Damian Krzyżanowski, Maria Katela, Romain Rivet, Sylwia Michlewska, Patrycja Przygodzka, M Anna Kowalska, Stéphane Brézillon
Journal
Cells
Abstract
The transcription factor Snail triggers epithelial-to-mesenchymal transition (EMT), endowing cancer (show more...)The transcription factor Snail triggers epithelial-to-mesenchymal transition (EMT), endowing cancer cells with invasive properties during tumor progression. Extracellular vesicles (EVs) released from cancer cells at various stages of cancer progression are known to influence the tumor pre-metastatic niche and metastatic potential. The aim of this study was to analyze the effect of Snail on murine colon adenocarcinoma cells (MC38 line) and on the characteristics of their EVs. Stable clones of Snail-overexpressing MC38 cells were investigated in vitro versus Mock cells. Increased expression of matrix metalloproteinase MMP-14 and augmented activity of MMP-9 and -14 were observed in Snail-MC38 cells. There was no change in the transcriptomic profile of proteoglycans in Snail-MC38 cells; however, the protein level of Glypican-1 (GPC1) was enhanced in EVs released from those cells. Our finding that GPC1 protein level was enhanced in EVs released from MC38 cells that overexpressed Snail and were in an early EMT stage might explain the specificity of the GPC1 biomarker in colon cancer diagnosis. Further, our data suggest that Snail, by changing the level of GPC1 on EVs released by colon cancer cells, may affect the generation of a distant premetastatic niche and metastatic organotropism in colon adenocarcinoma. (hide)
EV-METRIC
67% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
MC38-Snail 2
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: ANXA5/ HSP70/ Alix
non-EV: cytochrome c
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Sample Condition
MC38-Snail 2
EV-producing cells
MC-38
EV-harvesting Medium
Serum free medium
Cell viability
Yes
Cell viability (%)
Yes
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
22.5
Wash: time (min)
90
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
ANXA5/ HSP70/ Alix
Not detected contaminants
cytochrome c
EM
EM-type
Transmission-EM
Image type
Wide-field
EV190098 3/3 Mus musculus Cell culture supernatant (d)(U)C Izabela Papiewska-Pająk 2019 67%

Study summary

Full title
All authors
Izabela Papiewska-Pająk, Damian Krzyżanowski, Maria Katela, Romain Rivet, Sylwia Michlewska, Patrycja Przygodzka, M Anna Kowalska, Stéphane Brézillon
Journal
Cells
Abstract
The transcription factor Snail triggers epithelial-to-mesenchymal transition (EMT), endowing cancer (show more...)The transcription factor Snail triggers epithelial-to-mesenchymal transition (EMT), endowing cancer cells with invasive properties during tumor progression. Extracellular vesicles (EVs) released from cancer cells at various stages of cancer progression are known to influence the tumor pre-metastatic niche and metastatic potential. The aim of this study was to analyze the effect of Snail on murine colon adenocarcinoma cells (MC38 line) and on the characteristics of their EVs. Stable clones of Snail-overexpressing MC38 cells were investigated in vitro versus Mock cells. Increased expression of matrix metalloproteinase MMP-14 and augmented activity of MMP-9 and -14 were observed in Snail-MC38 cells. There was no change in the transcriptomic profile of proteoglycans in Snail-MC38 cells; however, the protein level of Glypican-1 (GPC1) was enhanced in EVs released from those cells. Our finding that GPC1 protein level was enhanced in EVs released from MC38 cells that overexpressed Snail and were in an early EMT stage might explain the specificity of the GPC1 biomarker in colon cancer diagnosis. Further, our data suggest that Snail, by changing the level of GPC1 on EVs released by colon cancer cells, may affect the generation of a distant premetastatic niche and metastatic organotropism in colon adenocarcinoma. (hide)
EV-METRIC
67% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
MC38-Snail 6
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: ANXA5/ HSP70/ Alix
non-EV: cytochrome c
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Sample Condition
MC38-Snail 6
EV-producing cells
MC-38
EV-harvesting Medium
Serum free medium
Cell viability
Yes
Cell viability (%)
Yes
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
22.5
Wash: time (min)
90
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
ANXA5/ HSP70/ Alix
Not detected contaminants
cytochrome c
EM
EM-type
Transmission-EM
Image type
Wide-field
EV190090 1/1 Homo sapiens Cell culture supernatant (d)(U)C
Filtration
Torres Crigna A 2019 67%

Study summary

Full title
All authors
Torres Crigna A., Fricke F., Nitschke K., Worst T., Erb U., Karremann M., Buschmann D., Elvers-Hornung S., Tucher C., Schiller M., Hausser I., Gebert J., Bieback K.
Journal
Transfus Med Hemother
Abstract
Background/Aims: Extracellular vesicles (EVs), including microvesicles and exosomes, deliver bioacti (show more...)Background/Aims: Extracellular vesicles (EVs), including microvesicles and exosomes, deliver bioactive cargo mediating intercellular communication in physiological and pathological conditions. EVs are increasingly investigated as therapeutic agents and targets, but also as disease biomarkers. However, a definite consensus regarding EV isolation methods is lacking, which makes it intricate to standardize research practices and eventually reach a desirable level of data comparability. In our study, we performed an inter-laboratory comparison of EV isolation based on a differential ultracentrifugation protocol carried out in 4 laboratories in 2 independent rounds of isolation. Methods: Conditioned medium of colorectal cancer cells was prepared and pooled by 1 person and distributed to each of the participating laboratories for isolation according to a pre-defined protocol. After EV isolation in each laboratory, quantification and characterization of isolated EVs was collectively done by 1 person having the highest expertise in the respective test method: Western blot, flow cytometry (fluorescence-activated cell sorting [FACS], nanoparticle tracking analysis (NTA), and transmission electron microscopy (TEM). Results: EVs were visualized with TEM, presenting similar cup-shaped and spherical morphology and sizes ranging from 30 to 150 nm. NTA results showed similar size ranges of particles in both isolation rounds. EV preparations showed high purity by the expression of EV marker proteins CD9, CD63, CD81, Alix, and TSG101, and the lack of calnexin. FACS analysis of EVs revealed intense staining for CD63 and CD81 but lower levels for CD9 and TSG101. Preparations from 1 laboratory presented significantly lower particle numbers (p < 0.0001), most probably related to increased processing time. However, even when standardizing processing time, particle yields still differed significantly between groups, indicating inter-laboratory differences in the efficiency of EV isolation. Importantly, no relation was observed between centrifugation speed/k-factor and EV yield. Conclusions: Our findings demonstrate that quantitative differences in EV yield might be due to equipment- and operator-dependent technical variability in ultracentrifugation-based EV isolation. Furthermore, our study emphasizes the need to standardize technical parameters such as the exact run speed and k-factor in order to transfer protocols between different laboratories. This hints at substantial inter-laboratory biases that should be assessed in multi-centric studies. (hide)
EV-METRIC
67% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Filtration
Protein markers
EV: TSG101/ CD81/ CD63/ CD9/ Alix
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
HCT116
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability
Yes
Cell viability (%)
Yes
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Surespin 630 (17 ml)
Pelleting: speed (g)
23000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9/ CD63/ TSG101/ Alix/ CD81
Not detected contaminants
calnexin
Flow cytometry specific beads
Detected EV-associated proteins
CD9/ CD63/ TSG101/ CD81
Not detected EV-associated proteins
Alix
Not detected contaminants
calnexin
EM
EM-type
Transmission-EM
Image type
Close-up
Report size (nm)
20-180
EV190058 1/1 Homo sapiens Cell culture supernatant (d)(U)C
qEV
UF
Takov K 2019 67%

Study summary

Full title
All authors
Takov K, He Z, Johnston HE, Timms JF, Guillot PV, Yellon DM, Davidson SM
Journal
Basic Res Cardiol
Abstract
Mesenchymal stromal cells (MSCs) exhibit antiapoptotic and proangiogenic functions in models of myoc (show more...)Mesenchymal stromal cells (MSCs) exhibit antiapoptotic and proangiogenic functions in models of myocardial infarction which may be mediated by secreted small extracellular vesicles (sEVs). However, MSCs have frequently been harvested from aged or diseased patients, while the isolated sEVs often contain high levels of impurities. Here, we studied the cardioprotective and proangiogenic activities of size-exclusion chromatography-purified sEVs secreted from human foetal amniotic fluid stem cells (SS-hAFSCs), possessing superior functional potential to that of adult MSCs. We demonstrated for the first time that highly pure (up to 1.7 × 1010 particles/µg protein) and thoroughly characterised SS-hAFSC sEVs protect rat hearts from ischaemia-reperfusion injury in vivo when administered intravenously prior to reperfusion (38 ± 9% infarct size reduction, p < 0.05). SS-hAFSC sEVs did not protect isolated primary cardiomyocytes in models of simulated ischaemia-reperfusion injury in vitro, indicative of indirect cardioprotective effects. SS-hAFSC sEVs were not proangiogenic in vitro, although they markedly stimulated endothelial cell migration. Additionally, sEVs were entirely responsible for the promigratory effects of the medium conditioned by SS-hAFSC. Mechanistically, sEV-induced chemotaxis involved phosphatidylinositol 3-kinase (PI3K) signalling, as its pharmacological inhibition in treated endothelial cells reduced migration by 54 ± 7% (p < 0.001). Together, these data indicate that SS-hAFSC sEVs have multifactorial beneficial effects in a myocardial infarction setting. (hide)
EV-METRIC
67% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
small extracellular vesicles (sEVs)
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + qEV + UF
Protein markers
EV: CD81/ CD63/ CD9
non-EV: ACTN4
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
primary spindle-shaped amniotic fluid stem cells
EV-harvesting Medium
Serum free medium
Cell viability
Yes
Cell viability (%)
Yes
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Ultra filtration
Cut-off size (kDa)
30
Membrane type
Hydrosart (stabilised cellulose);Other
Commercial kit
qEV
EV-subtype
Distinction between multiple subtypes
Used subtypes
Characterization: Protein analysis
Protein Concentration Method
microBCA;Bradford
Proteomics database
No
Other 1
Immunoassay (DELFIA)
Detected EV-associated proteins
CD9/ CD63/ CD81
Other 2
Dot blot
Detected EV-associated proteins
CD81/ CD63
Not detected EV-associated proteins
CD9
Not detected contaminants
ACTN4
Characterization: Particle analysis
NTA
Report type
Mode
Reported size (nm)
100.5
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV190055 2/4 Homo sapiens Cell culture supernatant DG
(d)(U)C
Ferreira JV 2019 67%

Study summary

Full title
All authors
Ferreira JV, Rosa Soares A, Ramalho JS, Ribeiro-Rodrigues T, Máximo C, Zuzarte M, Girão H, Pereira P.
Journal
PLoS One
Abstract
Deregulation of proteostasis is a main feature of many age-related diseases, often leading to the ac (show more...)Deregulation of proteostasis is a main feature of many age-related diseases, often leading to the accumulation of toxic oligomers and insoluble protein aggregates that accumulate intracellularly or in the extracellular space. To understand the mechanisms whereby toxic or otherwise unwanted proteins are secreted to the extracellular space, we inactivated the quality-control and proteostasis regulator ubiquitin ligase STUB1/CHIP. Data indicated that STUB1 deficiency leads both to the intracellular accumulation of protein aggregates and to an increase in the secretion of small extracellular vesicles (sEVs), including exosomes. Secreted sEVs are enriched in ubiquitinated and/or undegraded proteins and protein oligomers. Data also indicates that oxidative stress induces an increase in the release of sEVs in cells depleted from STUB1. Overall, the results presented here suggest that cells use exosomes to dispose of damaged and/or undegraded proteins as a means to reduce intracellular accumulation of proteotoxic material. (hide)
EV-METRIC
67% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Microvesicles (MVs)
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + (d)(U)C
Protein markers
EV: CD63/ GAPDH/ CANX/ Na/K A1 ATPase
non-EV:
Proteomics
no
EV density (g/ml)
1.15
Show all info
Study aim
Function/Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
ARPE-19
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
120000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
120000
Density gradient
Only used for validation of main results
Yes
Density medium
Sucrose
Type
Discontinuous
Number of initial discontinuous layers
16
Lowest density fraction
0.4M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
8
Sample volume (mL)
0.5
Orientation
Bottom-up
Rotor type
Type 70.1Ti
Speed (g)
210000
Duration (min)
960
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
38
Pelleting: duration (min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
120000
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
>200
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ GAPDH/ Na/K A1 ATPase/ CANX
EM
EM-type
Transmission-EM
Image type
Close-up
EV190055 4/4 Homo sapiens Cell culture supernatant DG
(d)(U)C
Ferreira JV 2019 67%

Study summary

Full title
All authors
Ferreira JV, Rosa Soares A, Ramalho JS, Ribeiro-Rodrigues T, Máximo C, Zuzarte M, Girão H, Pereira P.
Journal
PLoS One
Abstract
Deregulation of proteostasis is a main feature of many age-related diseases, often leading to the ac (show more...)Deregulation of proteostasis is a main feature of many age-related diseases, often leading to the accumulation of toxic oligomers and insoluble protein aggregates that accumulate intracellularly or in the extracellular space. To understand the mechanisms whereby toxic or otherwise unwanted proteins are secreted to the extracellular space, we inactivated the quality-control and proteostasis regulator ubiquitin ligase STUB1/CHIP. Data indicated that STUB1 deficiency leads both to the intracellular accumulation of protein aggregates and to an increase in the secretion of small extracellular vesicles (sEVs), including exosomes. Secreted sEVs are enriched in ubiquitinated and/or undegraded proteins and protein oligomers. Data also indicates that oxidative stress induces an increase in the release of sEVs in cells depleted from STUB1. Overall, the results presented here suggest that cells use exosomes to dispose of damaged and/or undegraded proteins as a means to reduce intracellular accumulation of proteotoxic material. (hide)
EV-METRIC
67% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Microvesicles (MVs)
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + (d)(U)C
Protein markers
EV: CD63/ GAPDH/ CANX/ Na/K A1 ATPase
non-EV:
Proteomics
no
EV density (g/ml)
1.15
Show all info
Study aim
Function/Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
ARPE-19
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
120000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
120000
Density gradient
Only used for validation of main results
Yes
Density medium
Sucrose
Type
Discontinuous
Number of initial discontinuous layers
16
Lowest density fraction
0.4M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
8
Sample volume (mL)
0.5
Orientation
Bottom-up
Rotor type
Type 70.1Ti
Speed (g)
210000
Duration (min)
960
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
38
Pelleting: duration (min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
120000
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
>200
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
GAPDH/ Na/K A1 ATPase/ CANX/ CD63
EM
EM-type
Transmission-EM
Image type
Close-up
EV190040 7/12 Homo sapiens Cell culture supernatant DG
UF
Geeurickx E 2019 67%

Study summary

Full title
All authors
Geeurickx E, Tulkens J, Dhondt B, Van Deun J, Lippens L, Vergauwen G, Heyrman E, De Sutter D, Gevaert K, Impens F, Miinalainen I, Van Bockstal PJ, De Beer T, Wauben MHM, Nolte-'t-Hoen ENM, Bloch K, Swinnen JV, van der Pol E, Nieuwland R, Braems G, Callewaert N, Mestdagh P, Vandesompele J, Denys H, Eyckerman S, De Wever O, Hendrix A.
Journal
Nat Commun
Abstract
Recent years have seen an increase of extracellular vesicle (EV) research geared towards biological (show more...)Recent years have seen an increase of extracellular vesicle (EV) research geared towards biological understanding, diagnostics and therapy. However, EV data interpretation remains challenging owing to complexity of biofluids and technical variation introduced during sample preparation and analysis. To understand and mitigate these limitations, we generated trackable recombinant EV (rEV) as a biological reference material. Employing complementary characterization methods, we demonstrate that rEV are stable and bear physical and biochemical traits characteristic of sample EV. Furthermore, rEV can be quantified using fluorescence-, RNA- and protein-based technologies available in routine laboratories. Spiking rEV in biofluids allows recovery efficiencies of commonly implemented EV separation methods to be identified, intra-method and inter-user variability induced by sample handling to be defined, and to normalize and improve sensitivity of EV enumerations. We anticipate that rEV will aid EV-based sample preparation and analysis, data normalization, method development and instrument calibration in various research and biomedical applications. (hide)
EV-METRIC
67% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + UF
Protein markers
EV:
non-EV:
Proteomics
no
EV density (g/ml)
1.076 1.088 g/ml
Show all info
Study aim
New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
MCF7
EV-harvesting Medium
Serum free medium
Cell viability
Yes
Cell viability (%)
Yes
Separation Method
Density gradient
Only used for validation of main results
Yes
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
11
Lowest density fraction
6
Highest density fraction
18
Total gradient volume, incl. sample (mL)
15
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 32.1 Ti
Speed (g)
186700
Duration (min)
116
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
16
Pelleting: duration (min)
180
Pelleting: rotor type
SW 32.1 Ti
Pelleting: speed (g)
100000
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
EV-subtype
Distinction between multiple subtypes
Density
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV190038 1/3 Homo sapiens Blood plasma (d)(U)C García-Silva S 2019 67%

Study summary

Full title
All authors
García-Silva S, Benito-Martín A, Sánchez-Redondo S, Hernández-Barranco A, Ximénez-Embún P, Nogués L, Mazariegos MS, Brinkmann K, Amor López A, Meyer L, Rodríguez C, García-Martín C, Boskovic J, Letón R, Montero C, Robledo M, Santambrogio L, Sue Brady M, Szumera-Ciećkiewicz A, Kalinowska I, Skog J, Noerholm M, Muñoz J, Ortiz-Romero PL, Ruano Y, Rodríguez-Peralto JL, Rutkowski P, Peinado H.
Journal
J Exp Med
Abstract
Liquid biopsies from cancer patients have the potential to improve diagnosis and prognosis. The asse (show more...)Liquid biopsies from cancer patients have the potential to improve diagnosis and prognosis. The assessment of surrogate markers of tumor progression in circulating extracellular vesicles could be a powerful non-invasive approach in this setting. We have characterized extracellular vesicles purified from the lymphatic drainage also known as exudative seroma (ES) of stage III melanoma patients obtained after lymphadenectomy. Proteomic analysis showed that seroma-derived exosomes are enriched in proteins resembling melanoma progression. In addition, we found that the BRAFV600E mutation can be detected in ES-derived extracellular vesicles and its detection correlated with patients at risk of relapse. (hide)
EV-METRIC
67% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Melanoma patients stage III
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: CD63/ GADPH/ CD81/ HSP90/ TRP2/ CD9
non-EV:
Proteomics
yes
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
Melanoma patients stage III
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 50.4 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
3
Wash: time (min)
70
Wash: Rotor Type
Type 50.4 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9/ CD63/ GADPH/ CD81/ TRP2
Not detected EV-associated proteins
HSP90
Proteomics database
ProteomeXchange Consortium
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
126
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
30.4
EV190033 1/2 Homo sapiens Blood plasma (d)(U)C
Filtration
Li Min 2019 67%

Study summary

Full title
All authors
Li Min, Shengtao Zhu, Lei Chen, Xiang Liu, Rui Wei, Libo Zhao, Yuqing Yang, Zheng Zhang, Guanyi Kong, Peng Li & Shutian Zhang
Journal
J Extracell Vesicles
Abstract
Early diagnosis of colon cancer (CC) is clinically important, as it can significantly improve patien (show more...)Early diagnosis of colon cancer (CC) is clinically important, as it can significantly improve patients’ survival rate and quality of life. Although the potential role for small extracellular vesicles (sEVs) in early detection of many diseases has been repeatedly mentioned, systematic screening of plasma sEVs derived early CC specific biomarkers has not yet been reported. In this work, plasma sEVs enriched fractions were derived from 15 early-stage (TisN0M0) CC patients and 10 normal controls (NC). RNA sequencing identified a total number of 95 sEVs enriched fraction derived miRNAs with differential expression between CC and NC, most of which (60/95) was in well accordance with tissue results in the Cancer Genome Atlas (TCGA) dataset. Among those miRNAs, we selected let-7b-3p, miR-139-3p, miR-145-3p, and miR-150-3p for further validation in an independent cohort consisting of 134 participants (58 CC and 76 NC). In the validation cohort, the AUC of 4 individual miRNAs ranged from 0.680 to 0.792. A logistic model combining two miRNAs (i.e. let-7b-3p and miR-145-3p) achieved an AUC of 0.901. Adding the 3rd miRNA into this model can further increase the AUC to 0.927. Side by side comparison revealed that sEVs miRNA profile outperformed cell-free plasma miRNA in the diagnosis of early CC. In conclusion, we suggested that circulating sEVs enriched fractions have a distinct miRNA profile in CC patients, and sEVs derived miRNA could be used as a promising biomarker to detect CC at an early stage. (hide)
EV-METRIC
67% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Filtration
Protein markers
EV: TSG101/ Alix/ CD63
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
Control condition
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
240
Pelleting: rotor type
P50AT2-986
Pelleting: speed (g)
150000
Wash: volume per pellet (ml)
1
Wash: time (min)
120
Wash: Rotor Type
P50A3-0099
Wash: speed (g)
150000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD63/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: RNA analysis
Proteinase treatment
Moment of Proteinase treatment
After
Proteinase type
Proteinase K
Proteinase concentration
100
RNAse treatment
Moment of RNAse treatment
After
RNAse type
RNase A
RNAse concentration
0.01
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
75-200
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
EV190024 2/10 Homo sapiens Cell culture supernatant (d)(U)C Michela Borghesan 2019 67%

Study summary

Full title
All authors
Michela Borghesan, Juan Fafián-Labora, Olga Eleftheriadou, Paula Carpintero-Fernández, Marta Paez-Ribes, Gema Vizcay-Barrena, Avital Swisa, Dror Kolodkin-Gal, Pilar Ximénez-Embún, Robert Lowe, Belen Martín-Martín, Hector Peinado, Javier Muñoz, Roland A. Fleck, Yuval Dor, Ittai Ben-Porath, Anna Vossenkamper, Daniel Muñoz-Espin and Ana O’Loghlen
Journal
Cell Rep
Abstract
Senescence is a cellular phenotype present in health and disease, characterized by a stable cell-cyc (show more...)Senescence is a cellular phenotype present in health and disease, characterized by a stable cell-cycle arrest and an inflammatory response called senescence-associated secretory phenotype (SASP). The SASP is important in influencing the behavior of neighboring cells and altering the microenvironment; yet, this role has been mainly attributed to soluble factors. Here, we show that both the soluble factors and small extracellular vesicles (sEVs) are capable of transmitting paracrine senescence to nearby cells. Analysis of individual cells internalizing sEVs, using a Cre-reporter system, show a positive correlation between sEV uptake and senescence activation. We find an increase in the number of multivesicular bodies during senescence in vivo. sEV protein characterization by mass spectrometry (MS) followed by a functional siRNA screen identify interferon-induced transmembrane protein 3 (IFITM3) as being partially responsible for transmitting senescence to normal cells. We find that sEVs contribute to paracrine senescence. (hide)
EV-METRIC
67% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other / small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: CD81/ IFITM3/ CD63/ CD9/ Alix
non-EV: calnexin/ Cox IV
Proteomics
yes
Show all info
Study aim
Function/Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
Foreskin primary fibroblasts
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability
Yes
Cell viability (%)
Yes
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
80
Pelleting: rotor type
T-865
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
15
Wash: time (min)
80
Wash: Rotor Type
T-865
Wash: speed (g)
100000
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
Small vesicles (below 200nm)
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
Alix/ CD63
Not detected EV-associated proteins
CD81/ CD9
Not detected contaminants
Cox IV/ calnexin
Flow cytometry specific beads
Detected EV-associated proteins
IFITM3/ CD63/ CD81
Proteomics database
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
150
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
NovoCyte Flow Cytometer
Hardware adjustment
Calibration bead size
4
Report type
Not Reported
EM
EM-type
Transmission-EM
Image type
Wide-field
EV190024 4/10 Homo sapiens Cell culture supernatant (d)(U)C Michela Borghesan 2019 67%

Study summary

Full title
All authors
Michela Borghesan, Juan Fafián-Labora, Olga Eleftheriadou, Paula Carpintero-Fernández, Marta Paez-Ribes, Gema Vizcay-Barrena, Avital Swisa, Dror Kolodkin-Gal, Pilar Ximénez-Embún, Robert Lowe, Belen Martín-Martín, Hector Peinado, Javier Muñoz, Roland A. Fleck, Yuval Dor, Ittai Ben-Porath, Anna Vossenkamper, Daniel Muñoz-Espin and Ana O’Loghlen
Journal
Cell Rep
Abstract
Senescence is a cellular phenotype present in health and disease, characterized by a stable cell-cyc (show more...)Senescence is a cellular phenotype present in health and disease, characterized by a stable cell-cycle arrest and an inflammatory response called senescence-associated secretory phenotype (SASP). The SASP is important in influencing the behavior of neighboring cells and altering the microenvironment; yet, this role has been mainly attributed to soluble factors. Here, we show that both the soluble factors and small extracellular vesicles (sEVs) are capable of transmitting paracrine senescence to nearby cells. Analysis of individual cells internalizing sEVs, using a Cre-reporter system, show a positive correlation between sEV uptake and senescence activation. We find an increase in the number of multivesicular bodies during senescence in vivo. sEV protein characterization by mass spectrometry (MS) followed by a functional siRNA screen identify interferon-induced transmembrane protein 3 (IFITM3) as being partially responsible for transmitting senescence to normal cells. We find that sEVs contribute to paracrine senescence. (hide)
EV-METRIC
67% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other / small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: CD81/ Alix/ TSG101/ CD63/ CD9
non-EV: calnexin/ Cox IV
Proteomics
yes
Show all info
Study aim
Function/Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
Foreskin primary fibroblasts
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability
Yes
Cell viability (%)
Yes
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
80
Pelleting: rotor type
T-865
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
15
Wash: time (min)
80
Wash: Rotor Type
T-865
Wash: speed (g)
100000
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
Small vesicles (below 200nm)
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
Alix/ CD63/ TSG101
Not detected EV-associated proteins
CD81/ CD9
Not detected contaminants
Cox IV/ calnexin
Proteomics database
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
below 200
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
NovoCyte Flow Cytometer
Hardware adjustment
Calibration bead size
4
Report type
Not Reported
EM
EM-type
Transmission-EM
Image type
Wide-field
EV190024 6/10 Homo sapiens Cell culture supernatant (d)(U)C Michela Borghesan 2019 67%

Study summary

Full title
All authors
Michela Borghesan, Juan Fafián-Labora, Olga Eleftheriadou, Paula Carpintero-Fernández, Marta Paez-Ribes, Gema Vizcay-Barrena, Avital Swisa, Dror Kolodkin-Gal, Pilar Ximénez-Embún, Robert Lowe, Belen Martín-Martín, Hector Peinado, Javier Muñoz, Roland A. Fleck, Yuval Dor, Ittai Ben-Porath, Anna Vossenkamper, Daniel Muñoz-Espin and Ana O’Loghlen
Journal
Cell Rep
Abstract
Senescence is a cellular phenotype present in health and disease, characterized by a stable cell-cyc (show more...)Senescence is a cellular phenotype present in health and disease, characterized by a stable cell-cycle arrest and an inflammatory response called senescence-associated secretory phenotype (SASP). The SASP is important in influencing the behavior of neighboring cells and altering the microenvironment; yet, this role has been mainly attributed to soluble factors. Here, we show that both the soluble factors and small extracellular vesicles (sEVs) are capable of transmitting paracrine senescence to nearby cells. Analysis of individual cells internalizing sEVs, using a Cre-reporter system, show a positive correlation between sEV uptake and senescence activation. We find an increase in the number of multivesicular bodies during senescence in vivo. sEV protein characterization by mass spectrometry (MS) followed by a functional siRNA screen identify interferon-induced transmembrane protein 3 (IFITM3) as being partially responsible for transmitting senescence to normal cells. We find that sEVs contribute to paracrine senescence. (hide)
EV-METRIC
67% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other / small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: IFITM3/ TSG101/ CD63/ CD81/ Alix/ CD9
non-EV: calnexin/ Cox IV
Proteomics
yes
Show all info
Study aim
Function/Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
Foreskin primary fibroblasts
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability
Yes
Cell viability (%)
Yes
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
80
Pelleting: rotor type
T-865
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
15
Wash: time (min)
80
Wash: Rotor Type
T-865
Wash: speed (g)
100000
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
Small vesicles (below 200nm)
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
Alix/ TSG101/ CD63
Not detected EV-associated proteins
CD81/ CD9
Not detected contaminants
Cox IV/ calnexin
Flow cytometry specific beads
Detected EV-associated proteins
IFITM3/ CD63/ CD81
Proteomics database
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
below 200
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
NovoCyte Flow Cytometer
Hardware adjustment
Calibration bead size
4
EM
EM-type
Transmission-EM
Image type
Wide-field
EV190024 8/10 Homo sapiens Cell culture supernatant (d)(U)C Michela Borghesan 2019 67%

Study summary

Full title
All authors
Michela Borghesan, Juan Fafián-Labora, Olga Eleftheriadou, Paula Carpintero-Fernández, Marta Paez-Ribes, Gema Vizcay-Barrena, Avital Swisa, Dror Kolodkin-Gal, Pilar Ximénez-Embún, Robert Lowe, Belen Martín-Martín, Hector Peinado, Javier Muñoz, Roland A. Fleck, Yuval Dor, Ittai Ben-Porath, Anna Vossenkamper, Daniel Muñoz-Espin and Ana O’Loghlen
Journal
Cell Rep
Abstract
Senescence is a cellular phenotype present in health and disease, characterized by a stable cell-cyc (show more...)Senescence is a cellular phenotype present in health and disease, characterized by a stable cell-cycle arrest and an inflammatory response called senescence-associated secretory phenotype (SASP). The SASP is important in influencing the behavior of neighboring cells and altering the microenvironment; yet, this role has been mainly attributed to soluble factors. Here, we show that both the soluble factors and small extracellular vesicles (sEVs) are capable of transmitting paracrine senescence to nearby cells. Analysis of individual cells internalizing sEVs, using a Cre-reporter system, show a positive correlation between sEV uptake and senescence activation. We find an increase in the number of multivesicular bodies during senescence in vivo. sEV protein characterization by mass spectrometry (MS) followed by a functional siRNA screen identify interferon-induced transmembrane protein 3 (IFITM3) as being partially responsible for transmitting senescence to normal cells. We find that sEVs contribute to paracrine senescence. (hide)
EV-METRIC
67% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
inducible H-RASG12V
Focus vesicles
Other / small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: IFITM3/ TSG101/ CD63/ CD81/ Alix/ CD9
non-EV: calnexin/ Cox IV
Proteomics
yes
Show all info
Study aim
Function/Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
inducible H-RASG12V
EV-producing cells
Foreskin primary fibroblasts
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability
Yes
Cell viability (%)
Yes
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
80
Pelleting: rotor type
T-865
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
15
Wash: time (min)
80
Wash: Rotor Type
T-865
Wash: speed (g)
100000
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
Small vesicles (below 200nm)
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
Alix/ TSG101/ CD63
Not detected EV-associated proteins
CD81/ CD9
Not detected contaminants
Cox IV/ calnexin
Flow cytometry specific beads
Detected EV-associated proteins
IFITM3/ CD63/ CD81
Proteomics database
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
below 200
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
NovoCyte Flow Cytometer
Hardware adjustment
Calibration bead size
4
EM
EM-type
Transmission-EM
Image type
Wide-field
EV190024 10/10 Homo sapiens Cell culture supernatant (d)(U)C Michela Borghesan 2019 67%

Study summary

Full title
All authors
Michela Borghesan, Juan Fafián-Labora, Olga Eleftheriadou, Paula Carpintero-Fernández, Marta Paez-Ribes, Gema Vizcay-Barrena, Avital Swisa, Dror Kolodkin-Gal, Pilar Ximénez-Embún, Robert Lowe, Belen Martín-Martín, Hector Peinado, Javier Muñoz, Roland A. Fleck, Yuval Dor, Ittai Ben-Porath, Anna Vossenkamper, Daniel Muñoz-Espin and Ana O’Loghlen
Journal
Cell Rep
Abstract
Senescence is a cellular phenotype present in health and disease, characterized by a stable cell-cyc (show more...)Senescence is a cellular phenotype present in health and disease, characterized by a stable cell-cycle arrest and an inflammatory response called senescence-associated secretory phenotype (SASP). The SASP is important in influencing the behavior of neighboring cells and altering the microenvironment; yet, this role has been mainly attributed to soluble factors. Here, we show that both the soluble factors and small extracellular vesicles (sEVs) are capable of transmitting paracrine senescence to nearby cells. Analysis of individual cells internalizing sEVs, using a Cre-reporter system, show a positive correlation between sEV uptake and senescence activation. We find an increase in the number of multivesicular bodies during senescence in vivo. sEV protein characterization by mass spectrometry (MS) followed by a functional siRNA screen identify interferon-induced transmembrane protein 3 (IFITM3) as being partially responsible for transmitting senescence to normal cells. We find that sEVs contribute to paracrine senescence. (hide)
EV-METRIC
67% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
inducible H-RASG12V
Focus vesicles
small extracellular vesicles / Other
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: CD81/ Alix/ TSG101/ CD63/ CD9
non-EV: calnexin/ Cox IV
Proteomics
yes
Show all info
Study aim
Function/Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
inducible H-RASG12V
EV-producing cells
Foreskin primary fibroblasts
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability
Yes
Cell viability (%)
Yes
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
80
Pelleting: rotor type
T-865
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
15
Wash: time (min)
80
Wash: Rotor Type
T-865
Wash: speed (g)
100000
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
Small vesicles (below 200nm)
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
Alix/ TSG101/ CD63
Not detected EV-associated proteins
CD9/ CD81
Not detected contaminants
Cox IV/ calnexin
Proteomics database
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
below 200
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
NovoCyte Flow Cytometer
Hardware adjustment
Calibration bead size
4
Report type
Not Reported
EM
EM-type
Transmission-EM
Image type
Wide-field
EV180050 1/6 Homo sapiens Cell culture supernatant (d)(U)C
Filtration
Alice Gualerzi 2019 66%

Study summary

Full title
All authors
Alice Gualerzi, Sander Alexander Antonius Kooijmans, Stefania Niada, Silvia Picciolini, Anna Teresa Brini, Giovanni Camussi & Marzia Bedoni
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) from a variety of stem cell sources are believed to harbour regenerativ (show more...)Extracellular vesicles (EVs) from a variety of stem cell sources are believed to harbour regenerative capacity, which may be exploited for therapeutic purposes. Because of EV interaction with other soluble secreted factors, EV activity may depend on the employed purification method, which limits cross-study comparisons and therapeutic development. Raman spectroscopy (RS) is a quick and easy method to assess EV purity and composition, giving in-depth biochemical overview on EV preparation. Hereby, we show how this method can be used to characterise EVs isolated from human liver stem cells and bone marrow mesenchymal stem/stromal cells by means of conventional ultracentrifugation (UC) and size exclusion chromatography (SEC) protocols. The obtained EV preparations were demonstrated to be characterised by different degrees of purity and a specific Raman fingerprint that represents both the cell source and the isolation procedure used. Moreover, RS provided useful hints to explore the factors underlying the functional diversity of EV preparations from the same cell source, thus representing a valuable tool to assess EV quality prior to functional assays or therapeutic application. (hide)
EV-METRIC
66% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Filtration
Adj. k-factor
156.9 (pelleting) / 156.9 (washing)
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ beta-actin/ Flotillin-1/ CD9
non-EV: Calnexin/ Calreticulin
Proteomics
no
Show all info
Study aim
New methodological development, Technical analysis comparing/optimizing EV-related methods, Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
liver stem cells
EV-harvesting Medium
Serum free medium
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Wash: time (min)
70
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
156.9
Filtration steps
> 0.45 µm,
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix, CD63, CD81, CD9, Flotillin-1, TSG101, beta-actin
Not detected contaminants
Calnexin, Calreticulin
Characterization: Particle analysis
PMID previous EV particle analysis
Other
Extra particle analysis
NTA
Report type
Mean
Reported size (nm)
189 ± 27
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV180050 2/6 Homo sapiens Cell culture supernatant (d)(U)C
Filtration
Alice Gualerzi 2019 66%

Study summary

Full title
All authors
Alice Gualerzi, Sander Alexander Antonius Kooijmans, Stefania Niada, Silvia Picciolini, Anna Teresa Brini, Giovanni Camussi & Marzia Bedoni
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) from a variety of stem cell sources are believed to harbour regenerativ (show more...)Extracellular vesicles (EVs) from a variety of stem cell sources are believed to harbour regenerative capacity, which may be exploited for therapeutic purposes. Because of EV interaction with other soluble secreted factors, EV activity may depend on the employed purification method, which limits cross-study comparisons and therapeutic development. Raman spectroscopy (RS) is a quick and easy method to assess EV purity and composition, giving in-depth biochemical overview on EV preparation. Hereby, we show how this method can be used to characterise EVs isolated from human liver stem cells and bone marrow mesenchymal stem/stromal cells by means of conventional ultracentrifugation (UC) and size exclusion chromatography (SEC) protocols. The obtained EV preparations were demonstrated to be characterised by different degrees of purity and a specific Raman fingerprint that represents both the cell source and the isolation procedure used. Moreover, RS provided useful hints to explore the factors underlying the functional diversity of EV preparations from the same cell source, thus representing a valuable tool to assess EV quality prior to functional assays or therapeutic application. (hide)
EV-METRIC
66% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Filtration
Adj. k-factor
156.9 (pelleting)
Protein markers
EV: CD81/ Flotillin-1/ CD63
non-EV: Calnexin/ Calreticulin
Proteomics
no
Show all info
Study aim
New methodological development, Technical analysis comparing/optimizing EV-related methods, Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
bone marrow-derived mesenchymal stem cells
EV-harvesting Medium
Serum free medium
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Filtration steps
> 0.45 µm,
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63, CD81, Flotillin-1
Not detected contaminants
Calnexin, Calreticulin
Characterization: Particle analysis
PMID previous EV particle analysis
Other
Extra particle analysis
NTA
Report type
Mean
Reported size (nm)
212 ± 34
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV180050 5/6 Homo sapiens Cell culture supernatant (d)(U)C
Filtration
Alice Gualerzi 2019 66%

Study summary

Full title
All authors
Alice Gualerzi, Sander Alexander Antonius Kooijmans, Stefania Niada, Silvia Picciolini, Anna Teresa Brini, Giovanni Camussi & Marzia Bedoni
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) from a variety of stem cell sources are believed to harbour regenerativ (show more...)Extracellular vesicles (EVs) from a variety of stem cell sources are believed to harbour regenerative capacity, which may be exploited for therapeutic purposes. Because of EV interaction with other soluble secreted factors, EV activity may depend on the employed purification method, which limits cross-study comparisons and therapeutic development. Raman spectroscopy (RS) is a quick and easy method to assess EV purity and composition, giving in-depth biochemical overview on EV preparation. Hereby, we show how this method can be used to characterise EVs isolated from human liver stem cells and bone marrow mesenchymal stem/stromal cells by means of conventional ultracentrifugation (UC) and size exclusion chromatography (SEC) protocols. The obtained EV preparations were demonstrated to be characterised by different degrees of purity and a specific Raman fingerprint that represents both the cell source and the isolation procedure used. Moreover, RS provided useful hints to explore the factors underlying the functional diversity of EV preparations from the same cell source, thus representing a valuable tool to assess EV quality prior to functional assays or therapeutic application. (hide)
EV-METRIC
66% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Filtration
Adj. k-factor
156.9 (pelleting) / 156.9 (washing)
Protein markers
EV: CD81/ Flotillin-1/ CD63
non-EV: Calnexin/ Calreticulin
Proteomics
no
Show all info
Study aim
New methodological development, Technical analysis comparing/optimizing EV-related methods, Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
bone marrow-derived mesenchymal stem cells
EV-harvesting Medium
Serum free medium
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Wash: time (min)
70
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
156.9
Filtration steps
> 0.45 µm,
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63, CD81, Flotillin-1
Not detected contaminants
Calnexin, Calreticulin
Characterization: Particle analysis
PMID previous EV particle analysis
Other
Extra particle analysis
NTA
Report type
Mean
Reported size (nm)
204 ± 42
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV180050 6/6 Homo sapiens Cell culture supernatant (d)(U)C
Filtration
Alice Gualerzi 2019 66%

Study summary

Full title
All authors
Alice Gualerzi, Sander Alexander Antonius Kooijmans, Stefania Niada, Silvia Picciolini, Anna Teresa Brini, Giovanni Camussi & Marzia Bedoni
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) from a variety of stem cell sources are believed to harbour regenerativ (show more...)Extracellular vesicles (EVs) from a variety of stem cell sources are believed to harbour regenerative capacity, which may be exploited for therapeutic purposes. Because of EV interaction with other soluble secreted factors, EV activity may depend on the employed purification method, which limits cross-study comparisons and therapeutic development. Raman spectroscopy (RS) is a quick and easy method to assess EV purity and composition, giving in-depth biochemical overview on EV preparation. Hereby, we show how this method can be used to characterise EVs isolated from human liver stem cells and bone marrow mesenchymal stem/stromal cells by means of conventional ultracentrifugation (UC) and size exclusion chromatography (SEC) protocols. The obtained EV preparations were demonstrated to be characterised by different degrees of purity and a specific Raman fingerprint that represents both the cell source and the isolation procedure used. Moreover, RS provided useful hints to explore the factors underlying the functional diversity of EV preparations from the same cell source, thus representing a valuable tool to assess EV quality prior to functional assays or therapeutic application. (hide)
EV-METRIC
66% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Filtration
Adj. k-factor
156.9 (pelleting)
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ beta-actin/ Flotillin-1/ CD9
non-EV: Calnexin/ Calreticulin
Proteomics
no
Show all info
Study aim
New methodological development, Technical analysis comparing/optimizing EV-related methods, Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
liver stem cells
EV-harvesting Medium
Serum free medium
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Filtration steps
> 0.45 µm,
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix, CD63, CD81, CD9, Flotillin-1, TSG101, beta-actin
Not detected contaminants
Calnexin, Calreticulin
Characterization: Particle analysis
PMID previous EV particle analysis
Other
Extra particle analysis
NTA
Report type
Mean
Reported size (nm)
184 ± 33
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV180029 1/8 Homo sapiens Cell culture supernatant (d)(U)C Palviainen, Mari 2019 66%

Study summary

Full title
All authors
Mari Palviainen ORCID Icon, Heikki Saari ORCID Icon, Olli Kärkkäinen ORCID Icon, Jenna Pekkinen, Seppo Auriola, Marjo Yliperttula, Maija Puhka, Kati Hanhineva & Pia R.-M. Siljander
Journal
J Extracell Vesicles
Abstract
One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficie (show more...)One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficient material in a consistent and effective way using in vitro cell models. Although the production of EVs in bioreactors maximizes EV yield in comparison to conventional cell cultures, the impact of their cell growth conditions on EVs has not yet been established. In this study, we grew two prostate cancer cell lines, PC-3 and VCaP, in conventional cell culture dishes and in two-chamber bioreactors to elucidate how the growth environment affects the EV characteristics. Specifically, we wanted to investigate the growth condition-dependent differences by non-targeted metabolite profiling using liquid chromatography–mass spectrometry (LC–MS) analysis. EVs were also characterized by their morphology, size distribution, and EV protein marker expression, and the EV yields were quantified by NTA. The use of bioreactor increased the EV yield >100 times compared to the conventional cell culture system. Regarding morphology, size distribution and surface markers, only minor differences were observed between the bioreactor-derived EVs (BR-EVs) and the EVs obtained from cells grown in conventional cell cultures (C-EVs). In contrast, metabolomic analysis revealed statistically significant differences in both polar and non-polar metabolites when the BR-EVs were compared to the C-EVs. The results show that the growth conditions markedly affected the EV metabolite profiles and that metabolomics was a sensitive tool to study molecular differences of EVs. We conclude that the cell culture conditions of EV production should be standardized and carefully detailed in publications and care should be taken when EVs from different production platforms are compared with each other for systemic effects. (hide)
EV-METRIC
66% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Adj. k-factor
142.9 (pelleting) / 89.2 (washing)
Protein markers
EV: CD81/ TSG101/ CD29/ CD9
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
PC3
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
110000
Pelleting: adjusted k-factor
142.9
Wash: time (min)
120
Wash: Rotor Type
TLA-55
Wash: speed (g)
100000
Wash: adjusted k-factor
89.20
Characterization: Protein analysis
Protein Concentration Method
Lowry-based assay
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, CD81, TSG101, CD29
Not detected contaminants
calnexin
Characterization: Particle analysis
PMID previous EV particle analysis
Electron microscopy
Extra particle analysis
NTA
Report type
Mean
Reported size (nm)
144.8
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV180029 2/8 Homo sapiens Cell culture supernatant (d)(U)C Palviainen, Mari 2019 66%

Study summary

Full title
All authors
Mari Palviainen ORCID Icon, Heikki Saari ORCID Icon, Olli Kärkkäinen ORCID Icon, Jenna Pekkinen, Seppo Auriola, Marjo Yliperttula, Maija Puhka, Kati Hanhineva & Pia R.-M. Siljander
Journal
J Extracell Vesicles
Abstract
One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficie (show more...)One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficient material in a consistent and effective way using in vitro cell models. Although the production of EVs in bioreactors maximizes EV yield in comparison to conventional cell cultures, the impact of their cell growth conditions on EVs has not yet been established. In this study, we grew two prostate cancer cell lines, PC-3 and VCaP, in conventional cell culture dishes and in two-chamber bioreactors to elucidate how the growth environment affects the EV characteristics. Specifically, we wanted to investigate the growth condition-dependent differences by non-targeted metabolite profiling using liquid chromatography–mass spectrometry (LC–MS) analysis. EVs were also characterized by their morphology, size distribution, and EV protein marker expression, and the EV yields were quantified by NTA. The use of bioreactor increased the EV yield >100 times compared to the conventional cell culture system. Regarding morphology, size distribution and surface markers, only minor differences were observed between the bioreactor-derived EVs (BR-EVs) and the EVs obtained from cells grown in conventional cell cultures (C-EVs). In contrast, metabolomic analysis revealed statistically significant differences in both polar and non-polar metabolites when the BR-EVs were compared to the C-EVs. The results show that the growth conditions markedly affected the EV metabolite profiles and that metabolomics was a sensitive tool to study molecular differences of EVs. We conclude that the cell culture conditions of EV production should be standardized and carefully detailed in publications and care should be taken when EVs from different production platforms are compared with each other for systemic effects. (hide)
EV-METRIC
66% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Adj. k-factor
142.9 (pelleting) / 89.2 (washing)
Protein markers
EV: CD81/ TSG101/ CD29/ CD9
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
VCaP
EV-harvesting Medium
Serum-containing, but physical separation of serum EVs and secreted EVs (e.g. Bioreactor flask)
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
110000
Pelleting: adjusted k-factor
142.9
Wash: time (min)
120
Wash: Rotor Type
TLA-55
Wash: speed (g)
100000
Wash: adjusted k-factor
89.20
Characterization: Protein analysis
Protein Concentration Method
Lowry-based assay
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, CD81, TSG101, CD29
Not detected contaminants
calnexin
Characterization: Particle analysis
PMID previous EV particle analysis
Electron microscopy
Extra particle analysis
NTA
Report type
Mean
Reported size (nm)
88
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up
EV180029 3/8 Homo sapiens Cell culture supernatant (d)(U)C Palviainen, Mari 2019 66%

Study summary

Full title
All authors
Mari Palviainen ORCID Icon, Heikki Saari ORCID Icon, Olli Kärkkäinen ORCID Icon, Jenna Pekkinen, Seppo Auriola, Marjo Yliperttula, Maija Puhka, Kati Hanhineva & Pia R.-M. Siljander
Journal
J Extracell Vesicles
Abstract
One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficie (show more...)One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficient material in a consistent and effective way using in vitro cell models. Although the production of EVs in bioreactors maximizes EV yield in comparison to conventional cell cultures, the impact of their cell growth conditions on EVs has not yet been established. In this study, we grew two prostate cancer cell lines, PC-3 and VCaP, in conventional cell culture dishes and in two-chamber bioreactors to elucidate how the growth environment affects the EV characteristics. Specifically, we wanted to investigate the growth condition-dependent differences by non-targeted metabolite profiling using liquid chromatography–mass spectrometry (LC–MS) analysis. EVs were also characterized by their morphology, size distribution, and EV protein marker expression, and the EV yields were quantified by NTA. The use of bioreactor increased the EV yield >100 times compared to the conventional cell culture system. Regarding morphology, size distribution and surface markers, only minor differences were observed between the bioreactor-derived EVs (BR-EVs) and the EVs obtained from cells grown in conventional cell cultures (C-EVs). In contrast, metabolomic analysis revealed statistically significant differences in both polar and non-polar metabolites when the BR-EVs were compared to the C-EVs. The results show that the growth conditions markedly affected the EV metabolite profiles and that metabolomics was a sensitive tool to study molecular differences of EVs. We conclude that the cell culture conditions of EV production should be standardized and carefully detailed in publications and care should be taken when EVs from different production platforms are compared with each other for systemic effects. (hide)
EV-METRIC
66% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Adj. k-factor
785.9 (pelleting) / 89.2 (washing)
Protein markers
EV: CD81/ TSG101/ CD29/ CD9
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
PC3
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
20000
Pelleting: adjusted k-factor
785.9
Wash: time (min)
120
Wash: Rotor Type
TLA-55
Wash: speed (g)
100000
Wash: adjusted k-factor
89.20
Characterization: Protein analysis
Protein Concentration Method
Lowry-based assay
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, CD81, TSG101, CD29
Not detected contaminants
calnexin
Characterization: Particle analysis
PMID previous EV particle analysis
Electron microscopy
Extra particle analysis
NTA
Report type
Mean
Reported size (nm)
178.3
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV180029 4/8 Homo sapiens Cell culture supernatant (d)(U)C Palviainen, Mari 2019 66%

Study summary

Full title
All authors
Mari Palviainen ORCID Icon, Heikki Saari ORCID Icon, Olli Kärkkäinen ORCID Icon, Jenna Pekkinen, Seppo Auriola, Marjo Yliperttula, Maija Puhka, Kati Hanhineva & Pia R.-M. Siljander
Journal
J Extracell Vesicles
Abstract
One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficie (show more...)One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficient material in a consistent and effective way using in vitro cell models. Although the production of EVs in bioreactors maximizes EV yield in comparison to conventional cell cultures, the impact of their cell growth conditions on EVs has not yet been established. In this study, we grew two prostate cancer cell lines, PC-3 and VCaP, in conventional cell culture dishes and in two-chamber bioreactors to elucidate how the growth environment affects the EV characteristics. Specifically, we wanted to investigate the growth condition-dependent differences by non-targeted metabolite profiling using liquid chromatography–mass spectrometry (LC–MS) analysis. EVs were also characterized by their morphology, size distribution, and EV protein marker expression, and the EV yields were quantified by NTA. The use of bioreactor increased the EV yield >100 times compared to the conventional cell culture system. Regarding morphology, size distribution and surface markers, only minor differences were observed between the bioreactor-derived EVs (BR-EVs) and the EVs obtained from cells grown in conventional cell cultures (C-EVs). In contrast, metabolomic analysis revealed statistically significant differences in both polar and non-polar metabolites when the BR-EVs were compared to the C-EVs. The results show that the growth conditions markedly affected the EV metabolite profiles and that metabolomics was a sensitive tool to study molecular differences of EVs. We conclude that the cell culture conditions of EV production should be standardized and carefully detailed in publications and care should be taken when EVs from different production platforms are compared with each other for systemic effects. (hide)
EV-METRIC
66% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Adj. k-factor
142.9 (pelleting) / 89.2 (washing)
Protein markers
EV: CD81/ TSG101/ CD29/ CD9
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
VCaP
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
110000
Pelleting: adjusted k-factor
142.9
Wash: time (min)
120
Wash: Rotor Type
TLA-55
Wash: speed (g)
100000
Wash: adjusted k-factor
89.20
Characterization: Protein analysis
Protein Concentration Method
Lowry-based assay
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, CD81, TSG101, CD29
Not detected contaminants
calnexin
Characterization: Particle analysis
PMID previous EV particle analysis
Electron microscopy
Extra particle analysis
NTA
Report type
Mean
Reported size (nm)
111
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV180029 5/8 Homo sapiens Cell culture supernatant (d)(U)C Palviainen, Mari 2019 66%

Study summary

Full title
All authors
Mari Palviainen ORCID Icon, Heikki Saari ORCID Icon, Olli Kärkkäinen ORCID Icon, Jenna Pekkinen, Seppo Auriola, Marjo Yliperttula, Maija Puhka, Kati Hanhineva & Pia R.-M. Siljander
Journal
J Extracell Vesicles
Abstract
One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficie (show more...)One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficient material in a consistent and effective way using in vitro cell models. Although the production of EVs in bioreactors maximizes EV yield in comparison to conventional cell cultures, the impact of their cell growth conditions on EVs has not yet been established. In this study, we grew two prostate cancer cell lines, PC-3 and VCaP, in conventional cell culture dishes and in two-chamber bioreactors to elucidate how the growth environment affects the EV characteristics. Specifically, we wanted to investigate the growth condition-dependent differences by non-targeted metabolite profiling using liquid chromatography–mass spectrometry (LC–MS) analysis. EVs were also characterized by their morphology, size distribution, and EV protein marker expression, and the EV yields were quantified by NTA. The use of bioreactor increased the EV yield >100 times compared to the conventional cell culture system. Regarding morphology, size distribution and surface markers, only minor differences were observed between the bioreactor-derived EVs (BR-EVs) and the EVs obtained from cells grown in conventional cell cultures (C-EVs). In contrast, metabolomic analysis revealed statistically significant differences in both polar and non-polar metabolites when the BR-EVs were compared to the C-EVs. The results show that the growth conditions markedly affected the EV metabolite profiles and that metabolomics was a sensitive tool to study molecular differences of EVs. We conclude that the cell culture conditions of EV production should be standardized and carefully detailed in publications and care should be taken when EVs from different production platforms are compared with each other for systemic effects. (hide)
EV-METRIC
66% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Adj. k-factor
785.9 (pelleting) / 89.2 (washing)
Protein markers
EV: CD81/ TSG101/ CD29/ CD9
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
VCaP
EV-harvesting Medium
Serum-containing, but physical separation of serum EVs and secreted EVs (e.g. Bioreactor flask)
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
20000
Pelleting: adjusted k-factor
785.9
Wash: time (min)
120
Wash: Rotor Type
TLA-55
Wash: speed (g)
100000
Wash: adjusted k-factor
89.20
Characterization: Protein analysis
Protein Concentration Method
Lowry-based assay
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, CD81, TSG101, CD29
Not detected contaminants
calnexin
Characterization: Particle analysis
PMID previous EV particle analysis
Electron microscopy
Extra particle analysis
NTA
Report type
Mean
Reported size (nm)
122.7
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up
EV180029 6/8 Homo sapiens Cell culture supernatant (d)(U)C Palviainen, Mari 2019 66%

Study summary

Full title
All authors
Mari Palviainen ORCID Icon, Heikki Saari ORCID Icon, Olli Kärkkäinen ORCID Icon, Jenna Pekkinen, Seppo Auriola, Marjo Yliperttula, Maija Puhka, Kati Hanhineva & Pia R.-M. Siljander
Journal
J Extracell Vesicles
Abstract
One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficie (show more...)One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficient material in a consistent and effective way using in vitro cell models. Although the production of EVs in bioreactors maximizes EV yield in comparison to conventional cell cultures, the impact of their cell growth conditions on EVs has not yet been established. In this study, we grew two prostate cancer cell lines, PC-3 and VCaP, in conventional cell culture dishes and in two-chamber bioreactors to elucidate how the growth environment affects the EV characteristics. Specifically, we wanted to investigate the growth condition-dependent differences by non-targeted metabolite profiling using liquid chromatography–mass spectrometry (LC–MS) analysis. EVs were also characterized by their morphology, size distribution, and EV protein marker expression, and the EV yields were quantified by NTA. The use of bioreactor increased the EV yield >100 times compared to the conventional cell culture system. Regarding morphology, size distribution and surface markers, only minor differences were observed between the bioreactor-derived EVs (BR-EVs) and the EVs obtained from cells grown in conventional cell cultures (C-EVs). In contrast, metabolomic analysis revealed statistically significant differences in both polar and non-polar metabolites when the BR-EVs were compared to the C-EVs. The results show that the growth conditions markedly affected the EV metabolite profiles and that metabolomics was a sensitive tool to study molecular differences of EVs. We conclude that the cell culture conditions of EV production should be standardized and carefully detailed in publications and care should be taken when EVs from different production platforms are compared with each other for systemic effects. (hide)
EV-METRIC
66% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Adj. k-factor
142.9 (pelleting) / 89.2 (washing)
Protein markers
EV: CD81/ TSG101/ CD29/ CD9
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
PC3
EV-harvesting Medium
Serum-containing, but physical separation of serum EVs and secreted EVs (e.g. Bioreactor flask)
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
110000
Pelleting: adjusted k-factor
142.9
Wash: time (min)
120
Wash: Rotor Type
TLA-55
Wash: speed (g)
100000
Wash: adjusted k-factor
89.20
Characterization: Protein analysis
Protein Concentration Method
Lowry-based assay
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, CD81, TSG101, CD29
Not detected contaminants
calnexin
Characterization: Particle analysis
PMID previous EV particle analysis
Electron microscopy
Extra particle analysis
NTA
Report type
Mean
Reported size (nm)
118.7
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV180029 7/8 Homo sapiens Cell culture supernatant (d)(U)C Palviainen, Mari 2019 66%

Study summary

Full title
All authors
Mari Palviainen ORCID Icon, Heikki Saari ORCID Icon, Olli Kärkkäinen ORCID Icon, Jenna Pekkinen, Seppo Auriola, Marjo Yliperttula, Maija Puhka, Kati Hanhineva & Pia R.-M. Siljander
Journal
J Extracell Vesicles
Abstract
One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficie (show more...)One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficient material in a consistent and effective way using in vitro cell models. Although the production of EVs in bioreactors maximizes EV yield in comparison to conventional cell cultures, the impact of their cell growth conditions on EVs has not yet been established. In this study, we grew two prostate cancer cell lines, PC-3 and VCaP, in conventional cell culture dishes and in two-chamber bioreactors to elucidate how the growth environment affects the EV characteristics. Specifically, we wanted to investigate the growth condition-dependent differences by non-targeted metabolite profiling using liquid chromatography–mass spectrometry (LC–MS) analysis. EVs were also characterized by their morphology, size distribution, and EV protein marker expression, and the EV yields were quantified by NTA. The use of bioreactor increased the EV yield >100 times compared to the conventional cell culture system. Regarding morphology, size distribution and surface markers, only minor differences were observed between the bioreactor-derived EVs (BR-EVs) and the EVs obtained from cells grown in conventional cell cultures (C-EVs). In contrast, metabolomic analysis revealed statistically significant differences in both polar and non-polar metabolites when the BR-EVs were compared to the C-EVs. The results show that the growth conditions markedly affected the EV metabolite profiles and that metabolomics was a sensitive tool to study molecular differences of EVs. We conclude that the cell culture conditions of EV production should be standardized and carefully detailed in publications and care should be taken when EVs from different production platforms are compared with each other for systemic effects. (hide)
EV-METRIC
66% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Adj. k-factor
785.9 (pelleting) / 89.2 (washing)
Protein markers
EV: CD81/ TSG101/ CD29/ CD9
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
PC3
EV-harvesting Medium
Serum-containing, but physical separation of serum EVs and secreted EVs (e.g. Bioreactor flask)
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
20000
Pelleting: adjusted k-factor
785.9
Wash: time (min)
120
Wash: Rotor Type
TLA-55
Wash: speed (g)
100000
Wash: adjusted k-factor
89.20
Characterization: Protein analysis
Protein Concentration Method
Lowry-based assay
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, CD81, TSG101, CD29
Not detected contaminants
calnexin
Characterization: Particle analysis
PMID previous EV particle analysis
Electron microscopy
Extra particle analysis
NTA
Report type
Mean
Reported size (nm)
148.8
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV180029 8/8 Homo sapiens Cell culture supernatant (d)(U)C Palviainen, Mari 2019 66%

Study summary

Full title
All authors
Mari Palviainen ORCID Icon, Heikki Saari ORCID Icon, Olli Kärkkäinen ORCID Icon, Jenna Pekkinen, Seppo Auriola, Marjo Yliperttula, Maija Puhka, Kati Hanhineva & Pia R.-M. Siljander
Journal
J Extracell Vesicles
Abstract
One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficie (show more...)One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficient material in a consistent and effective way using in vitro cell models. Although the production of EVs in bioreactors maximizes EV yield in comparison to conventional cell cultures, the impact of their cell growth conditions on EVs has not yet been established. In this study, we grew two prostate cancer cell lines, PC-3 and VCaP, in conventional cell culture dishes and in two-chamber bioreactors to elucidate how the growth environment affects the EV characteristics. Specifically, we wanted to investigate the growth condition-dependent differences by non-targeted metabolite profiling using liquid chromatography–mass spectrometry (LC–MS) analysis. EVs were also characterized by their morphology, size distribution, and EV protein marker expression, and the EV yields were quantified by NTA. The use of bioreactor increased the EV yield >100 times compared to the conventional cell culture system. Regarding morphology, size distribution and surface markers, only minor differences were observed between the bioreactor-derived EVs (BR-EVs) and the EVs obtained from cells grown in conventional cell cultures (C-EVs). In contrast, metabolomic analysis revealed statistically significant differences in both polar and non-polar metabolites when the BR-EVs were compared to the C-EVs. The results show that the growth conditions markedly affected the EV metabolite profiles and that metabolomics was a sensitive tool to study molecular differences of EVs. We conclude that the cell culture conditions of EV production should be standardized and carefully detailed in publications and care should be taken when EVs from different production platforms are compared with each other for systemic effects. (hide)
EV-METRIC
66% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Adj. k-factor
785.9 (pelleting) / 89.2 (washing)
Protein markers
EV: CD81/ TSG101/ CD29/ CD9
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
VCaP
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
20000
Pelleting: adjusted k-factor
785.9
Wash: time (min)
120
Wash: Rotor Type
TLA-55
Wash: speed (g)
100000
Wash: adjusted k-factor
89.20
Characterization: Protein analysis
Protein Concentration Method
Lowry-based assay
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, CD81, TSG101, CD29
Not detected contaminants
calnexin
Characterization: Particle analysis
PMID previous EV particle analysis
Electron microscopy
Extra particle analysis
NTA
Report type
Mean
Reported size (nm)
121.4
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV180021 1/4 Homo sapiens Cell culture supernatant (d)(U)C Bachurski, Daniel 2019 66%

Study summary

Full title
All authors
Daniel Bachurski ORCID Icon, Maximiliane Schuldner, Phuong-Hien Nguyen, Alexandra Malz, Katrin S Reiners, Patricia C Grenzi ORCID Icon, Felix Babatz, Astrid C Schauss, Hinrich P Hansen, Michael Hallek & Elke Pogge von Strandmann
Journal
J Extracell Vesicles
Abstract
The expanding field of extracellular vesicle (EV) research needs reproducible and accurate methods t (show more...)The expanding field of extracellular vesicle (EV) research needs reproducible and accurate methods to characterize single EVs. Nanoparticle Tracking Analysis (NTA) is commonly used to determine EV concentration and diameter. As the EV field is lacking methods to easily confirm and validate NTA data, questioning the reliability of measurements remains highly important. In this regard, a comparison addressing measurement quality between different NTA devices such as Malvern’s NanoSight NS300 or Particle Metrix’ ZetaView has not yet been conducted. To evaluate the accuracy and repeatability of size and concentration determinations of both devices, we employed comparative methods including transmission electron microscopy (TEM) and single particle interferometric reflectance imaging sensing (SP-IRIS) by ExoView. Multiple test measurements with nanospheres, liposomes and ultracentrifuged EVs from human serum and cell culture supernatant were performed. Additionally, serial dilutions and freeze-thaw cycle-dependent EV decrease were measured to determine the robustness of each system. Strikingly, NanoSight NS300 exhibited a 2.0–2.1-fold overestimation of polystyrene and silica nanosphere concentration. By measuring serial dilutions of EV samples, we demonstrated higher accuracy in concentration determination by ZetaView (% BIAS range: 2.7–8.5) in comparison with NanoSight NS300 (% BIAS range: 32.9–36.8). The concentration measurements by ZetaView were also more precise (% CV range: 0.0–4.7) than measurements by NanoSight NS300 (% CV range: 5.4–10.7). On the contrary, quantitative TEM imaging indicated more accurate EV sizing by NanoSight NS300 (% DTEM range: 79.5–134.3) compared to ZetaView (% DTEM range: 111.8–205.7), while being equally repeatable (NanoSight NS300% CV range: 0.8–6.7; ZetaView: 1.4–7.8). However, both devices failed to report a peak EV diameter below 60 nm compared to TEM and SP-IRIS. Taken together, NTA devices differ strongly in their hardware and software affecting measuring results. ZetaView provided a more accurate and repeatable depiction of EV concentration, whereas NanoSight NS300 supplied size measurements of higher resolution. (hide)
EV-METRIC
66% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Adj. k-factor
892 (washing)
Protein markers
EV: TSG101/ HSP70/ CD63/ CD9/ CD81
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
L540
EV-harvesting Medium
Serum free medium
Cell viability
95
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
30
Pelleting: speed (g)
10000
Wash: time (min)
30
Wash: Rotor Type
TLA-55
Wash: speed (g)
10000
Wash: adjusted k-factor
892.0
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63, HSP70, TSG101
Not detected contaminants
Calnexin
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-500
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
30-200
Other particle analysis name(1)
ExoView
Report type
Size range/distribution
Report size
50-200
EV-concentration
No
Extra information
EV-Track data set is associated with a technical paper comparing different NTA devices assessed by TEM and ExoView
EV180021 2/4 Homo sapiens Serum (d)(U)C Bachurski, Daniel 2019 66%

Study summary

Full title
All authors
Daniel Bachurski ORCID Icon, Maximiliane Schuldner, Phuong-Hien Nguyen, Alexandra Malz, Katrin S Reiners, Patricia C Grenzi ORCID Icon, Felix Babatz, Astrid C Schauss, Hinrich P Hansen, Michael Hallek & Elke Pogge von Strandmann
Journal
J Extracell Vesicles
Abstract
The expanding field of extracellular vesicle (EV) research needs reproducible and accurate methods t (show more...)The expanding field of extracellular vesicle (EV) research needs reproducible and accurate methods to characterize single EVs. Nanoparticle Tracking Analysis (NTA) is commonly used to determine EV concentration and diameter. As the EV field is lacking methods to easily confirm and validate NTA data, questioning the reliability of measurements remains highly important. In this regard, a comparison addressing measurement quality between different NTA devices such as Malvern’s NanoSight NS300 or Particle Metrix’ ZetaView has not yet been conducted. To evaluate the accuracy and repeatability of size and concentration determinations of both devices, we employed comparative methods including transmission electron microscopy (TEM) and single particle interferometric reflectance imaging sensing (SP-IRIS) by ExoView. Multiple test measurements with nanospheres, liposomes and ultracentrifuged EVs from human serum and cell culture supernatant were performed. Additionally, serial dilutions and freeze-thaw cycle-dependent EV decrease were measured to determine the robustness of each system. Strikingly, NanoSight NS300 exhibited a 2.0–2.1-fold overestimation of polystyrene and silica nanosphere concentration. By measuring serial dilutions of EV samples, we demonstrated higher accuracy in concentration determination by ZetaView (% BIAS range: 2.7–8.5) in comparison with NanoSight NS300 (% BIAS range: 32.9–36.8). The concentration measurements by ZetaView were also more precise (% CV range: 0.0–4.7) than measurements by NanoSight NS300 (% CV range: 5.4–10.7). On the contrary, quantitative TEM imaging indicated more accurate EV sizing by NanoSight NS300 (% DTEM range: 79.5–134.3) compared to ZetaView (% DTEM range: 111.8–205.7), while being equally repeatable (NanoSight NS300% CV range: 0.8–6.7; ZetaView: 1.4–7.8). However, both devices failed to report a peak EV diameter below 60 nm compared to TEM and SP-IRIS. Taken together, NTA devices differ strongly in their hardware and software affecting measuring results. ZetaView provided a more accurate and repeatable depiction of EV concentration, whereas NanoSight NS300 supplied size measurements of higher resolution. (hide)
EV-METRIC
66% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Adj. k-factor
892 (washing)
Protein markers
EV: HSP70/ CD63/ CD9
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
Control condition
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
30
Pelleting: speed (g)
10000
Wash: time (min)
30
Wash: Rotor Type
TLA-55
Wash: speed (g)
10000
Wash: adjusted k-factor
892.0
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63, HSP70
Not detected contaminants
Calnexin
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-500
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
30-500
Other particle analysis name(1)
ExoView
Report type
Size range/distribution
Report size
50-200
EV-concentration
No
Extra information
EV-Track data set is associated with a technical paper comparing different NTA devices assessed by TEM and ExoView
EV170032 1/2 Mus musculus Cell culture supernatant (d)(U)C
Flow cytometry
Aizea Morales-Kastresana 2019 66%

Study summary

Full title
All authors
Aizea Morales-Kastresana, Thomas A. Musich, Joshua A. Welsh, William Telford, Thorsten Demberg, James C. S. Wood, Marty Bigos, Carley D. Ross, Aliaksander Kachynski, Alan Dean, Edward J. Felton, Jonathan Van Dyke, John Tigges, Vasilis Toxavidis, David R. Parks, W. Roy Overton, Aparna H. Kesarwala, Gordon J. Freeman, Ariel Rosner, Stephen P. Perfetto, Lise Pasquet, Masaki Terabe, Katherine McKinnon, Veena Kapoor, Jane B. Trepel, Anu Puri, Hisataka Kobayashi, Bryant Yung, Xiaoyuan Chen, Peter Guion, Peter Choyke, Susan J. Knox, Ionita Ghiran, Marjorie Robert-Guroff, Jay A. Berzofsky and Jennifer C. Jones
Journal
J Extracell Vesicles
Abstract
Biological nanoparticles, including viruses and extracellular vesicles (EVs), are of interest to man (show more...)Biological nanoparticles, including viruses and extracellular vesicles (EVs), are of interest to many fields of medicine as biomarkers and mediators of or treatments for disease. However, exosomes and small viruses fall below the detection limits of conventional flow cytometers due to the overlap of particle-associated scattered light signals with the detection of background instrument noise from diffusely scattered light. To identify, sort, and study distinct subsets of EVs and other nanoparticles, as individual particles, we developed nanoscale Fluorescence Analysis and Cytometric Sorting (nanoFACS) methods to maximise information and material that can be obtained with high speed, high resolution flow cytometers. This nanoFACS method requires analysis of the instrument background noise (herein defined as the “reference noise”). With these methods, we demonstrate detection of tumour cell-derived EVs with specific tumour antigens using both fluorescence and scattered light parameters. We further validated the performance of nanoFACS by sorting two distinct HIV strains to >95% purity and confirmed the viability (infectivity) and molecular specificity (specific cell tropism) of biological nanomaterials sorted with nanoFACS. This nanoFACS method provides a unique way to analyse and sort functional EV- and viral-subsets with preservation of vesicular structure, surface protein specificity and RNA cargo activity. (hide)
EV-METRIC
66% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Flow cytometry
Adj. k-factor
156.9 (pelleting) / 41.45 (washing)
Protein markers
EV: Alix/ TSG101/ MHC2/ PSMA
non-EV: None
Proteomics
no
Show all info
Study aim
Function, New methodological development, Identification of content (omics approaches), Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
DC2.4, 4T1
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
>=18h at >= 100,000g
Cell viability
95
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Wash: time (min)
120
Wash: Rotor Type
TLA-120.1
Wash: speed (g)
100000
Wash: adjusted k-factor
41.45
Fluorescence-activated vesicle sorting
Type of flow cytometer
Astrios-EQ, using combinations of protein, membrane, and epitope-specific labels
Hardware adaptation to ~100nm EV's
Yes
Size of calibration beads (µm)
0.1, 0.2
Fluorescent labeling
Specific labelling of EV conte
EV-subtype
Used subtypes
Yes
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix, TSG101
Flow cytometry specific beads
Selected surface protein(s)
PSMA
Flow cytometry
Type of Flow cytometry
Astrios-EQ
Hardware adjustments
configuration with appropriate scatter thresholds and other settings for nanoFACS (high sensitivity optical path and signal processing)
Calibration bead size
0.1, 0.2, 0.5
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
80-180
EV concentration
Yes
Particle yield
5.00E+11 particles/ml start sample
Particle analysis: flow cytometry
Flow cytometer type
Astrios-EQ
Hardware adjustment
configuration with appropriate scatter thresholds and other settings for nanoFACS (high sensitivity optical path and signal processing)
Calibration bead size
0.1;0.2;0.5 and various
Report type
Median
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Extra information
EVs purified with the serial ultracentrifugation methods were labeled with small molecules or antibodies, and excess/unbound small molecules and antibodies were removed with either NAP-5 or qEV size exclusion chromatography
EV170032 2/2 Homo sapiens Cell culture supernatant (d)(U)C
Flow cytometry
Aizea Morales-Kastresana 2019 66%

Study summary

Full title
All authors
Aizea Morales-Kastresana, Thomas A. Musich, Joshua A. Welsh, William Telford, Thorsten Demberg, James C. S. Wood, Marty Bigos, Carley D. Ross, Aliaksander Kachynski, Alan Dean, Edward J. Felton, Jonathan Van Dyke, John Tigges, Vasilis Toxavidis, David R. Parks, W. Roy Overton, Aparna H. Kesarwala, Gordon J. Freeman, Ariel Rosner, Stephen P. Perfetto, Lise Pasquet, Masaki Terabe, Katherine McKinnon, Veena Kapoor, Jane B. Trepel, Anu Puri, Hisataka Kobayashi, Bryant Yung, Xiaoyuan Chen, Peter Guion, Peter Choyke, Susan J. Knox, Ionita Ghiran, Marjorie Robert-Guroff, Jay A. Berzofsky and Jennifer C. Jones
Journal
J Extracell Vesicles
Abstract
Biological nanoparticles, including viruses and extracellular vesicles (EVs), are of interest to man (show more...)Biological nanoparticles, including viruses and extracellular vesicles (EVs), are of interest to many fields of medicine as biomarkers and mediators of or treatments for disease. However, exosomes and small viruses fall below the detection limits of conventional flow cytometers due to the overlap of particle-associated scattered light signals with the detection of background instrument noise from diffusely scattered light. To identify, sort, and study distinct subsets of EVs and other nanoparticles, as individual particles, we developed nanoscale Fluorescence Analysis and Cytometric Sorting (nanoFACS) methods to maximise information and material that can be obtained with high speed, high resolution flow cytometers. This nanoFACS method requires analysis of the instrument background noise (herein defined as the “reference noise”). With these methods, we demonstrate detection of tumour cell-derived EVs with specific tumour antigens using both fluorescence and scattered light parameters. We further validated the performance of nanoFACS by sorting two distinct HIV strains to >95% purity and confirmed the viability (infectivity) and molecular specificity (specific cell tropism) of biological nanomaterials sorted with nanoFACS. This nanoFACS method provides a unique way to analyse and sort functional EV- and viral-subsets with preservation of vesicular structure, surface protein specificity and RNA cargo activity. (hide)
EV-METRIC
66% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Flow cytometry
Adj. k-factor
156.9 (pelleting) / 41.45 (washing)
Protein markers
EV: Alix/ TSG101/ MHC2/ PSMA
non-EV: None
Proteomics
no
Show all info
Study aim
Function, New methodological development, Identification of content (omics approaches), Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
PC3
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
>=18h at >= 100,000g
Cell viability
95
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Wash: time (min)
120
Wash: Rotor Type
TLA-120.1
Wash: speed (g)
100000
Wash: adjusted k-factor
41.45
Fluorescence-activated vesicle sorting
Type of flow cytometer
Astrios-EQ, using combinations of protein, membrane, and epitope-specific labels
Hardware adaptation to ~100nm EV's
Yes
Size of calibration beads (µm)
0.1, 0.2
Fluorescent labeling
Specific labelling of EV conte
EV-subtype
Used subtypes
Yes
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix, TSG101
Flow cytometry specific beads
Selected surface protein(s)
PSMA
Flow cytometry
Type of Flow cytometry
Astrios-EQ
Hardware adjustments
configuration with appropriate scatter thresholds and other settings for nanoFACS (high sensitivity optical path and signal processing)
Calibration bead size
0.1, 0.2, 0.5
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
80-180
EV concentration
Yes
Particle yield
5.00E+11 particles/ml start sample
Particle analysis: flow cytometry
Flow cytometer type
Astrios-EQ
Hardware adjustment
configuration with appropriate scatter thresholds and other settings for nanoFACS (high sensitivity optical path and signal processing)
Calibration bead size
0.1;0.2;0.5 and various
Report type
Median
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Extra information
EVs purified with the serial ultracentrifugation methods were labeled with small molecules or antibodies, and excess/unbound small molecules and antibodies were removed with either NAP-5 or qEV size exclusion chromatography
EV190021 1/4 Homo sapiens Blood plasma (d)(U)C
UF
Yunusova, Natalia 2019 63%

Study summary

Full title
All authors
Natalia V Yunusova, Marina R Patysheva, Sergey V Molchanov, Elena A Zambalova, Alina E Grigor'eva, Larisa A Kolomiets, Maxim O Ochirov, Svetlana N Tamkovich, Irina V Kondakova
Journal
Clinica Chimica Acta
Abstract
Metalloproteinases and their extracellular matrix metalloproteinase inducer (EMMPRIN) play an essent (show more...)Metalloproteinases and their extracellular matrix metalloproteinase inducer (EMMPRIN) play an essential role in the regulation of signaling from growth factors receptors and adhesion molecules, cell motility and extracellular matrix degradation. The aim of the study was to evaluate the relationship between the levels of small extracellular vesicles (sEVs) metalloproteinases, such as ADAM10, ADAM17, MMP2, MMP9 and EMMPRIN and ascites volume and peritoneal canceromatosis index in advanced ovarian cancer patients (OCPs). The subpopulations of metalloproteinases at the surface of sEVs of borderline ovarian tumor patients (BOTPs) (n = 20, 36.5 ± 2.5 years) and previously untreated advanced OCPs (n = 35, 56.5 ± 2.5 years) were evaluated using flow cytometry. The metalloproteinase subpopulations of CD9-positive sEVs isolated from plasma of BOTPs and OCPs appeared to be quite similar. However, a significant difference in the expression of ADAM-metalloproteinases in ascites sEVs was found between BOTPs and OCPs. The level of sEVs metalloproteinases in OCPs significantly depended on the ascites volume. A statistically significant relationship between the level of ADAM10+/ADAM17- subpopulation in plasma sEVs and the peritoneal canceromatosis index was found (R = 0.66, p < .05). The levels of metalloproteinases and EMMPRIN in circulating sEVs, as well as the assessment of individual subpopulations may be promising approaches to OCPs managing. (hide)
EV-METRIC
63% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
borderline ovarian tumors, control subjects
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + UF
Protein markers
EV: CD81/ CD63/ CD9/ CD24
non-EV: /
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
borderline ovarian tumors, control subjects
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
90
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
16
Wash: time (min)
90
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
1000000
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Polyethersulfone (PES)
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Flow cytometry specific beads
Detected EV-associated proteins
CD24/ CD9/ CD63/ CD81
Not detected EV-associated proteins
CD81/ CD63/ CD9/ CD24
Detected contaminants
Not detected contaminants
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
100
EV190004 1/1 Homo sapiens Urine qEV
UF
Eline Oeyen 2019 63%

Study summary

Full title
All authors
Eline Oeyen, Hanny Willems, Ruben T Kindt, Koen Sandra, Kurt Boonen, Lucien Hoekx, Stefan De Wachter, Filip Ameye and Inge Mertensa
Journal
J Extracell Vesicles
Abstract
Urinary extracellular vesicles (EVs) are an attractive source of biomarkers for urological diseases. (show more...)Urinary extracellular vesicles (EVs) are an attractive source of biomarkers for urological diseases. A crucial step in biomarker discovery studies is the determination of the variation parameters to perform a sample size calculation. In this way, a biomarker discovery study with sufficient statistical power can be performed to obtain biologically significant biomarkers. Here, a variation study was performed on both the protein and lipid content of urinary EVs of healthy individuals, aged between 52 and 69 years. Ultrafiltration (UF) in combination with size exclusion chromatography (SEC) was used to isolate the EVs from urine. Different experimental variation set-ups were used in this variation study. The calculated standard deviations (SDs) of the 90% least variable peptides and lipids did not exceed 2 and 1.2, respectively. These parameters can be used in a sample size calculation for a well-designed biomarker discovery study at the cargo of EVs. (hide)
EV-METRIC
63% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
qEV + UF
Protein markers
EV: Flotillin1
non-EV:
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Urine
Sample Condition
Control condition
Separation Method
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
Flotillin1
Proteomics database
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
108
EV concentration
Yes
Particle analysis: flow cytometry
Hardware adjustment
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
40-100
Report type
Size range/distribution
Report size
140-160
EV-concentration
No
EV180071 1/3 Homo sapiens Blood plasma SEC
UF
Brahmer A 2019 63%

Study summary

Full title
All authors
Brahmer A, Neuberger E, Esch-Heisser L, Haller N, Jorgensen MM, Baek R, Möbius W, Simon P, Krämer-Albers EM.
Journal
J Extracell Vesicles
Abstract
Physical activity initiates a wide range of multi-systemic adaptations that promote mental and physi (show more...)Physical activity initiates a wide range of multi-systemic adaptations that promote mental and physical health. Recent work demonstrated that exercise triggers the release of extracellular vesicles (EVs) into the circulation, possibly contributing to exercise-associated adaptive systemic signalling. Circulating EVs comprise a heterogeneous collection of different EV-subclasses released from various cell types. So far, a comprehensive picture of the parental and target cell types, EV-subpopulation diversity and functional properties of EVs released during exercise (ExerVs) is lacking. Here, we performed a detailed EV-phenotyping analysis to explore the cellular origin and potential subtypes of ExerVs. Healthy male athletes were subjected to an incremental cycling test until exhaustion and blood was drawn before, during, and immediately after the test. Analysis of total blood plasma by EV Array suggested endothelial and leukocyte characteristics of ExerVs. We further purified ExerVs from plasma by size exclusion chromatography as well as CD9-, CD63- or CD81-immunobead isolation to examine ExerV-subclass dynamics. EV-marker analysis demonstrated increasing EV-levels during cycling exercise, with highest levels at peak exercise in all EV-subclasses analysed. Phenotyping of ExerVs using a multiplexed flow-cytometry platform revealed a pattern of cell surface markers associated with ExerVs and identified lymphocytes (CD4, CD8), monocytes (CD14), platelets (CD41, CD42, CD62P), endothelial cells (CD105, CD146) and antigen presenting cells (MHC-II) as ExerV-parental cells. We conclude that multiple cell types associated with the circulatory system contribute to a pool of heterogeneous ExerVs, which may be involved in exercise-related signalling mechanisms and tissue crosstalk. (hide)
EV-METRIC
63% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein