Search > Results

You searched for: 2017 (Year of publication)

Showing 51 - 100 of 101

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, isolation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Isolation protocol
  • Gives a short, non-chronological overview of the different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Experiment number
  • Experiments differ in Sample origin
Experiment number
  • Experiments differ in Sample origin
Experiment number
  • Experiments differ in Sample origin
Experiment number
  • Experiments differ in Sample origin
Experiment number
  • Experiments differ in Sample origin
Experiment number
  • Experiments differ in Sample origin
Experiment number
  • Experiments differ in Sample origin
Experiment number
  • Experiments differ in Sample origin
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in sample origin
Experiment number
  • Experiments differ in sample origin
Experiment number
  • Experiments differ in sample origin
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Particle analysis
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Details EV-TRACK ID Experiment nr. Species Sample type Isolation protocol First author Year EV-METRIC
EV170006 1/8 Homo sapiens Serum dUC Julich-Haertel H 2017 37%

Study summary

Full title
All authors
Julich-Haertel H, Urban SK, Krawczyk M, Willms A, Jankowski K, Patkowski W, Kruk B, Krasnodębski M, Ligocka J, Schwab R, Richardsen I, Schaaf S, Klein A, Gehlert S, Sänger H, Casper M, Banales JM, Schuppan D, Milkiewicz P, Lammert F, Krawczyk M, Lukacs-Kornek V, Kornek M
Journal
J Hepatol
Abstract
BACKGROUND AND AIMS: we previously reported that large extracellular vesicles, specifically AnnexinV (show more...)BACKGROUND AND AIMS: we previously reported that large extracellular vesicles, specifically AnnexinV+EpCAM+CD147+ tumour-associated microparticles (taMPs), facilitate the detection of colorectal carcinoma (CRC), non-small cell lung carcinoma (NSCLC) as well as pancreas carcinoma (PaCa). Here we assess the diagnostic value of taMPs for detection and monitoring of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Specifically, we aim to differentiate liver taMPs from other cancer taMPs, such as CRC and NSCLC. METHODS: fluorescence-activated cell scanning (FACS) was applied to detect various taMP populations in patients' sera that were associated with the presence of a tumour (AnnexinV+EpCAM+CD147+taMPs) or could discriminate between cirrhosis (due to HCV or HBV) and liver cancers (AnnexinV+EpCAM+ASGPR1+ taMPs). In total 172 patients with liver cancer (HCC or CCA), 54 with cirrhosis and no liver neoplasia, 202 control subjects were enrolled. RESULTS: our results indicate that AnnexinV+EpCAM+CD147+ taMPs were elevated in HCC and CCA. Furthermore, AnnexinV+EpCAM+ASGPR1+CD133+ taMPs allowed the distinction of liver malignancies (HCC or CCA) and cirrhosis from tumour-free individuals and, more importantly, from patients carrying other non-liver cancers. In addition, AnnexinV+EpCAM+ASGPR1+ taMPs were increased in liver cancer-bearing patients compared to patients with cirrhosis that lacked any detectable liver malignancy. The smallest size of successfully detected cancers were ranging between 11-15 mm. AnnexinV+EpCAM+ASGPR1+ taMPs decreased at 7 days after curative R0 tumour resection suggesting close correlations with tumour presence. ROC values, sensitivity/specificity scores and positive/negative predictive values (>78%) indicated a potent diagnostic accuracy of AnnexinV+EpCAM+ASGPR1+ taMPs. CONCLUSION: we provide strong evidence that AnnexinV+EpCAM+ASGPR1+ taMPs are a novel biomarker of HCC and CCA liquid biopsy that permit a non-invasive assessment of the presence and possibly the extent of these cancers in patients with advanced liver diseases. LAY SUMMARY: Microparticles (MPs) are small vesicles that bleb from the membrane of every cell, including cancer cells, and are released to circulate in the bloodstream. Since their surface composition is similar to the surface of their underlying parental cell, MPs from the bloodstream can be isolated and by screening their surface components, the presence of their parental cells can be identified. This way, it was possible to detect and discriminate between patients bearing liver cancer and chronic liver cirrhosis. (hide)
EV-METRIC
37% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
microparticle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
284.4 (pelleting)
Protein markers
EV: ANXA5/ EpCAM/ CD147/ CD133/ ASGPR1
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
Control condition
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting: time(min)
60
Pelleting: rotor type
FA-45-24-11
Pelleting: speed (g)
20000
Pelleting: adjusted k-factor
284.4
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry
Type of Flow cytometry
MACSQuant® Analyzer 10
Calibration bead size
0.2,0.5
Extra information
We characterised various tumor-associated MPs (taMPs) in serum from various cancer patients aiming for the detection of liver cancer and differentiation from healthy subjects and other non-liver cancer entities. This led to several useful antigen combinations on taMPs that must be present simultaneously on the surface of the same MP in order to be accounted. That means, we reported several MP surface antigen combinations for the detection and differentiation of liver cancer (here: HCC and CCA).
EV170006 2/8 Homo sapiens Serum dUC Julich-Haertel H 2017 37%

Study summary

Full title
All authors
Julich-Haertel H, Urban SK, Krawczyk M, Willms A, Jankowski K, Patkowski W, Kruk B, Krasnodębski M, Ligocka J, Schwab R, Richardsen I, Schaaf S, Klein A, Gehlert S, Sänger H, Casper M, Banales JM, Schuppan D, Milkiewicz P, Lammert F, Krawczyk M, Lukacs-Kornek V, Kornek M
Journal
J Hepatol
Abstract
BACKGROUND AND AIMS: we previously reported that large extracellular vesicles, specifically AnnexinV (show more...)BACKGROUND AND AIMS: we previously reported that large extracellular vesicles, specifically AnnexinV+EpCAM+CD147+ tumour-associated microparticles (taMPs), facilitate the detection of colorectal carcinoma (CRC), non-small cell lung carcinoma (NSCLC) as well as pancreas carcinoma (PaCa). Here we assess the diagnostic value of taMPs for detection and monitoring of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Specifically, we aim to differentiate liver taMPs from other cancer taMPs, such as CRC and NSCLC. METHODS: fluorescence-activated cell scanning (FACS) was applied to detect various taMP populations in patients' sera that were associated with the presence of a tumour (AnnexinV+EpCAM+CD147+taMPs) or could discriminate between cirrhosis (due to HCV or HBV) and liver cancers (AnnexinV+EpCAM+ASGPR1+ taMPs). In total 172 patients with liver cancer (HCC or CCA), 54 with cirrhosis and no liver neoplasia, 202 control subjects were enrolled. RESULTS: our results indicate that AnnexinV+EpCAM+CD147+ taMPs were elevated in HCC and CCA. Furthermore, AnnexinV+EpCAM+ASGPR1+CD133+ taMPs allowed the distinction of liver malignancies (HCC or CCA) and cirrhosis from tumour-free individuals and, more importantly, from patients carrying other non-liver cancers. In addition, AnnexinV+EpCAM+ASGPR1+ taMPs were increased in liver cancer-bearing patients compared to patients with cirrhosis that lacked any detectable liver malignancy. The smallest size of successfully detected cancers were ranging between 11-15 mm. AnnexinV+EpCAM+ASGPR1+ taMPs decreased at 7 days after curative R0 tumour resection suggesting close correlations with tumour presence. ROC values, sensitivity/specificity scores and positive/negative predictive values (>78%) indicated a potent diagnostic accuracy of AnnexinV+EpCAM+ASGPR1+ taMPs. CONCLUSION: we provide strong evidence that AnnexinV+EpCAM+ASGPR1+ taMPs are a novel biomarker of HCC and CCA liquid biopsy that permit a non-invasive assessment of the presence and possibly the extent of these cancers in patients with advanced liver diseases. LAY SUMMARY: Microparticles (MPs) are small vesicles that bleb from the membrane of every cell, including cancer cells, and are released to circulate in the bloodstream. Since their surface composition is similar to the surface of their underlying parental cell, MPs from the bloodstream can be isolated and by screening their surface components, the presence of their parental cells can be identified. This way, it was possible to detect and discriminate between patients bearing liver cancer and chronic liver cirrhosis. (hide)
EV-METRIC
37% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
microparticle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
284.4 (pelleting)
Protein markers
EV: ANXA5/ EpCAM/ CD147/ CD133/ ASGPR1
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
Inguinal hernia
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting: time(min)
60
Pelleting: rotor type
FA-45-24-11
Pelleting: speed (g)
20000
Pelleting: adjusted k-factor
284.4
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry
Type of Flow cytometry
MACSQuant® Analyzer 10
Calibration bead size
0.2,0.5
Extra information
We characterised various tumor-associated MPs (taMPs) in serum from various cancer patients aiming for the detection of liver cancer and differentiation from healthy subjects and other non-liver cancer entities. This led to several useful antigen combinations on taMPs that must be present simultaneously on the surface of the same MP in order to be accounted. That means, we reported several MP surface antigen combinations for the detection and differentiation of liver cancer (here: HCC and CCA).
EV170006 3/8 Homo sapiens Serum dUC Julich-Haertel H 2017 37%

Study summary

Full title
All authors
Julich-Haertel H, Urban SK, Krawczyk M, Willms A, Jankowski K, Patkowski W, Kruk B, Krasnodębski M, Ligocka J, Schwab R, Richardsen I, Schaaf S, Klein A, Gehlert S, Sänger H, Casper M, Banales JM, Schuppan D, Milkiewicz P, Lammert F, Krawczyk M, Lukacs-Kornek V, Kornek M
Journal
J Hepatol
Abstract
BACKGROUND AND AIMS: we previously reported that large extracellular vesicles, specifically AnnexinV (show more...)BACKGROUND AND AIMS: we previously reported that large extracellular vesicles, specifically AnnexinV+EpCAM+CD147+ tumour-associated microparticles (taMPs), facilitate the detection of colorectal carcinoma (CRC), non-small cell lung carcinoma (NSCLC) as well as pancreas carcinoma (PaCa). Here we assess the diagnostic value of taMPs for detection and monitoring of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Specifically, we aim to differentiate liver taMPs from other cancer taMPs, such as CRC and NSCLC. METHODS: fluorescence-activated cell scanning (FACS) was applied to detect various taMP populations in patients' sera that were associated with the presence of a tumour (AnnexinV+EpCAM+CD147+taMPs) or could discriminate between cirrhosis (due to HCV or HBV) and liver cancers (AnnexinV+EpCAM+ASGPR1+ taMPs). In total 172 patients with liver cancer (HCC or CCA), 54 with cirrhosis and no liver neoplasia, 202 control subjects were enrolled. RESULTS: our results indicate that AnnexinV+EpCAM+CD147+ taMPs were elevated in HCC and CCA. Furthermore, AnnexinV+EpCAM+ASGPR1+CD133+ taMPs allowed the distinction of liver malignancies (HCC or CCA) and cirrhosis from tumour-free individuals and, more importantly, from patients carrying other non-liver cancers. In addition, AnnexinV+EpCAM+ASGPR1+ taMPs were increased in liver cancer-bearing patients compared to patients with cirrhosis that lacked any detectable liver malignancy. The smallest size of successfully detected cancers were ranging between 11-15 mm. AnnexinV+EpCAM+ASGPR1+ taMPs decreased at 7 days after curative R0 tumour resection suggesting close correlations with tumour presence. ROC values, sensitivity/specificity scores and positive/negative predictive values (>78%) indicated a potent diagnostic accuracy of AnnexinV+EpCAM+ASGPR1+ taMPs. CONCLUSION: we provide strong evidence that AnnexinV+EpCAM+ASGPR1+ taMPs are a novel biomarker of HCC and CCA liquid biopsy that permit a non-invasive assessment of the presence and possibly the extent of these cancers in patients with advanced liver diseases. LAY SUMMARY: Microparticles (MPs) are small vesicles that bleb from the membrane of every cell, including cancer cells, and are released to circulate in the bloodstream. Since their surface composition is similar to the surface of their underlying parental cell, MPs from the bloodstream can be isolated and by screening their surface components, the presence of their parental cells can be identified. This way, it was possible to detect and discriminate between patients bearing liver cancer and chronic liver cirrhosis. (hide)
EV-METRIC
37% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
microparticle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
284.4 (pelleting)
Protein markers
EV: ANXA5/ EpCAM/ CD147/ CD133/ ASGPR1
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
Colon carcinoma
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting: time(min)
60
Pelleting: rotor type
FA-45-24-11
Pelleting: speed (g)
20000
Pelleting: adjusted k-factor
284.4
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry
Type of Flow cytometry
MACSQuant® Analyzer 10
Calibration bead size
0.2,0.5
Extra information
We characterised various tumor-associated MPs (taMPs) in serum from various cancer patients aiming for the detection of liver cancer and differentiation from healthy subjects and other non-liver cancer entities. This led to several useful antigen combinations on taMPs that must be present simultaneously on the surface of the same MP in order to be accounted. That means, we reported several MP surface antigen combinations for the detection and differentiation of liver cancer (here: HCC and CCA).
EV170006 4/8 Homo sapiens Serum dUC Julich-Haertel H 2017 37%

Study summary

Full title
All authors
Julich-Haertel H, Urban SK, Krawczyk M, Willms A, Jankowski K, Patkowski W, Kruk B, Krasnodębski M, Ligocka J, Schwab R, Richardsen I, Schaaf S, Klein A, Gehlert S, Sänger H, Casper M, Banales JM, Schuppan D, Milkiewicz P, Lammert F, Krawczyk M, Lukacs-Kornek V, Kornek M
Journal
J Hepatol
Abstract
BACKGROUND AND AIMS: we previously reported that large extracellular vesicles, specifically AnnexinV (show more...)BACKGROUND AND AIMS: we previously reported that large extracellular vesicles, specifically AnnexinV+EpCAM+CD147+ tumour-associated microparticles (taMPs), facilitate the detection of colorectal carcinoma (CRC), non-small cell lung carcinoma (NSCLC) as well as pancreas carcinoma (PaCa). Here we assess the diagnostic value of taMPs for detection and monitoring of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Specifically, we aim to differentiate liver taMPs from other cancer taMPs, such as CRC and NSCLC. METHODS: fluorescence-activated cell scanning (FACS) was applied to detect various taMP populations in patients' sera that were associated with the presence of a tumour (AnnexinV+EpCAM+CD147+taMPs) or could discriminate between cirrhosis (due to HCV or HBV) and liver cancers (AnnexinV+EpCAM+ASGPR1+ taMPs). In total 172 patients with liver cancer (HCC or CCA), 54 with cirrhosis and no liver neoplasia, 202 control subjects were enrolled. RESULTS: our results indicate that AnnexinV+EpCAM+CD147+ taMPs were elevated in HCC and CCA. Furthermore, AnnexinV+EpCAM+ASGPR1+CD133+ taMPs allowed the distinction of liver malignancies (HCC or CCA) and cirrhosis from tumour-free individuals and, more importantly, from patients carrying other non-liver cancers. In addition, AnnexinV+EpCAM+ASGPR1+ taMPs were increased in liver cancer-bearing patients compared to patients with cirrhosis that lacked any detectable liver malignancy. The smallest size of successfully detected cancers were ranging between 11-15 mm. AnnexinV+EpCAM+ASGPR1+ taMPs decreased at 7 days after curative R0 tumour resection suggesting close correlations with tumour presence. ROC values, sensitivity/specificity scores and positive/negative predictive values (>78%) indicated a potent diagnostic accuracy of AnnexinV+EpCAM+ASGPR1+ taMPs. CONCLUSION: we provide strong evidence that AnnexinV+EpCAM+ASGPR1+ taMPs are a novel biomarker of HCC and CCA liquid biopsy that permit a non-invasive assessment of the presence and possibly the extent of these cancers in patients with advanced liver diseases. LAY SUMMARY: Microparticles (MPs) are small vesicles that bleb from the membrane of every cell, including cancer cells, and are released to circulate in the bloodstream. Since their surface composition is similar to the surface of their underlying parental cell, MPs from the bloodstream can be isolated and by screening their surface components, the presence of their parental cells can be identified. This way, it was possible to detect and discriminate between patients bearing liver cancer and chronic liver cirrhosis. (hide)
EV-METRIC
37% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
microparticle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
284.4 (pelleting)
Protein markers
EV: ANXA5/ EpCAM/ CD147/ CD133/ ASGPR1
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
Hepatocellular carcinoma
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting: time(min)
60
Pelleting: rotor type
FA-45-24-11
Pelleting: speed (g)
20000
Pelleting: adjusted k-factor
284.4
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry
Type of Flow cytometry
MACSQuant® Analyzer 10
Calibration bead size
0.2,0.5
Extra information
We characterised various tumor-associated MPs (taMPs) in serum from various cancer patients aiming for the detection of liver cancer and differentiation from healthy subjects and other non-liver cancer entities. This led to several useful antigen combinations on taMPs that must be present simultaneously on the surface of the same MP in order to be accounted. That means, we reported several MP surface antigen combinations for the detection and differentiation of liver cancer (here: HCC and CCA).
EV170006 5/8 Homo sapiens Serum dUC Julich-Haertel H 2017 37%

Study summary

Full title
All authors
Julich-Haertel H, Urban SK, Krawczyk M, Willms A, Jankowski K, Patkowski W, Kruk B, Krasnodębski M, Ligocka J, Schwab R, Richardsen I, Schaaf S, Klein A, Gehlert S, Sänger H, Casper M, Banales JM, Schuppan D, Milkiewicz P, Lammert F, Krawczyk M, Lukacs-Kornek V, Kornek M
Journal
J Hepatol
Abstract
BACKGROUND AND AIMS: we previously reported that large extracellular vesicles, specifically AnnexinV (show more...)BACKGROUND AND AIMS: we previously reported that large extracellular vesicles, specifically AnnexinV+EpCAM+CD147+ tumour-associated microparticles (taMPs), facilitate the detection of colorectal carcinoma (CRC), non-small cell lung carcinoma (NSCLC) as well as pancreas carcinoma (PaCa). Here we assess the diagnostic value of taMPs for detection and monitoring of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Specifically, we aim to differentiate liver taMPs from other cancer taMPs, such as CRC and NSCLC. METHODS: fluorescence-activated cell scanning (FACS) was applied to detect various taMP populations in patients' sera that were associated with the presence of a tumour (AnnexinV+EpCAM+CD147+taMPs) or could discriminate between cirrhosis (due to HCV or HBV) and liver cancers (AnnexinV+EpCAM+ASGPR1+ taMPs). In total 172 patients with liver cancer (HCC or CCA), 54 with cirrhosis and no liver neoplasia, 202 control subjects were enrolled. RESULTS: our results indicate that AnnexinV+EpCAM+CD147+ taMPs were elevated in HCC and CCA. Furthermore, AnnexinV+EpCAM+ASGPR1+CD133+ taMPs allowed the distinction of liver malignancies (HCC or CCA) and cirrhosis from tumour-free individuals and, more importantly, from patients carrying other non-liver cancers. In addition, AnnexinV+EpCAM+ASGPR1+ taMPs were increased in liver cancer-bearing patients compared to patients with cirrhosis that lacked any detectable liver malignancy. The smallest size of successfully detected cancers were ranging between 11-15 mm. AnnexinV+EpCAM+ASGPR1+ taMPs decreased at 7 days after curative R0 tumour resection suggesting close correlations with tumour presence. ROC values, sensitivity/specificity scores and positive/negative predictive values (>78%) indicated a potent diagnostic accuracy of AnnexinV+EpCAM+ASGPR1+ taMPs. CONCLUSION: we provide strong evidence that AnnexinV+EpCAM+ASGPR1+ taMPs are a novel biomarker of HCC and CCA liquid biopsy that permit a non-invasive assessment of the presence and possibly the extent of these cancers in patients with advanced liver diseases. LAY SUMMARY: Microparticles (MPs) are small vesicles that bleb from the membrane of every cell, including cancer cells, and are released to circulate in the bloodstream. Since their surface composition is similar to the surface of their underlying parental cell, MPs from the bloodstream can be isolated and by screening their surface components, the presence of their parental cells can be identified. This way, it was possible to detect and discriminate between patients bearing liver cancer and chronic liver cirrhosis. (hide)
EV-METRIC
37% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
microparticle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
284.4 (pelleting)
Protein markers
EV: ANXA5/ EpCAM/ CD147/ CD133/ ASGPR1
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
Liver tumour
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting: time(min)
60
Pelleting: rotor type
FA-45-24-11
Pelleting: speed (g)
20000
Pelleting: adjusted k-factor
284.4
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry
Type of Flow cytometry
MACSQuant® Analyzer 10
Calibration bead size
0.2,0.5
Extra information
We characterised various tumor-associated MPs (taMPs) in serum from various cancer patients aiming for the detection of liver cancer and differentiation from healthy subjects and other non-liver cancer entities. This led to several useful antigen combinations on taMPs that must be present simultaneously on the surface of the same MP in order to be accounted. That means, we reported several MP surface antigen combinations for the detection and differentiation of liver cancer (here: HCC and CCA).
EV170006 6/8 Homo sapiens Serum dUC Julich-Haertel H 2017 37%

Study summary

Full title
All authors
Julich-Haertel H, Urban SK, Krawczyk M, Willms A, Jankowski K, Patkowski W, Kruk B, Krasnodębski M, Ligocka J, Schwab R, Richardsen I, Schaaf S, Klein A, Gehlert S, Sänger H, Casper M, Banales JM, Schuppan D, Milkiewicz P, Lammert F, Krawczyk M, Lukacs-Kornek V, Kornek M
Journal
J Hepatol
Abstract
BACKGROUND AND AIMS: we previously reported that large extracellular vesicles, specifically AnnexinV (show more...)BACKGROUND AND AIMS: we previously reported that large extracellular vesicles, specifically AnnexinV+EpCAM+CD147+ tumour-associated microparticles (taMPs), facilitate the detection of colorectal carcinoma (CRC), non-small cell lung carcinoma (NSCLC) as well as pancreas carcinoma (PaCa). Here we assess the diagnostic value of taMPs for detection and monitoring of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Specifically, we aim to differentiate liver taMPs from other cancer taMPs, such as CRC and NSCLC. METHODS: fluorescence-activated cell scanning (FACS) was applied to detect various taMP populations in patients' sera that were associated with the presence of a tumour (AnnexinV+EpCAM+CD147+taMPs) or could discriminate between cirrhosis (due to HCV or HBV) and liver cancers (AnnexinV+EpCAM+ASGPR1+ taMPs). In total 172 patients with liver cancer (HCC or CCA), 54 with cirrhosis and no liver neoplasia, 202 control subjects were enrolled. RESULTS: our results indicate that AnnexinV+EpCAM+CD147+ taMPs were elevated in HCC and CCA. Furthermore, AnnexinV+EpCAM+ASGPR1+CD133+ taMPs allowed the distinction of liver malignancies (HCC or CCA) and cirrhosis from tumour-free individuals and, more importantly, from patients carrying other non-liver cancers. In addition, AnnexinV+EpCAM+ASGPR1+ taMPs were increased in liver cancer-bearing patients compared to patients with cirrhosis that lacked any detectable liver malignancy. The smallest size of successfully detected cancers were ranging between 11-15 mm. AnnexinV+EpCAM+ASGPR1+ taMPs decreased at 7 days after curative R0 tumour resection suggesting close correlations with tumour presence. ROC values, sensitivity/specificity scores and positive/negative predictive values (>78%) indicated a potent diagnostic accuracy of AnnexinV+EpCAM+ASGPR1+ taMPs. CONCLUSION: we provide strong evidence that AnnexinV+EpCAM+ASGPR1+ taMPs are a novel biomarker of HCC and CCA liquid biopsy that permit a non-invasive assessment of the presence and possibly the extent of these cancers in patients with advanced liver diseases. LAY SUMMARY: Microparticles (MPs) are small vesicles that bleb from the membrane of every cell, including cancer cells, and are released to circulate in the bloodstream. Since their surface composition is similar to the surface of their underlying parental cell, MPs from the bloodstream can be isolated and by screening their surface components, the presence of their parental cells can be identified. This way, it was possible to detect and discriminate between patients bearing liver cancer and chronic liver cirrhosis. (hide)
EV-METRIC
37% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
microparticle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
284.4 (pelleting)
Protein markers
EV: ANXA5/ EpCAM/ CD147/ CD133/ ASGPR1
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
Cirrhosis
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting: time(min)
60
Pelleting: rotor type
FA-45-24-11
Pelleting: speed (g)
20000
Pelleting: adjusted k-factor
284.4
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry
Type of Flow cytometry
MACSQuant® Analyzer 10
Calibration bead size
0.2,0.5
Extra information
We characterised various tumor-associated MPs (taMPs) in serum from various cancer patients aiming for the detection of liver cancer and differentiation from healthy subjects and other non-liver cancer entities. This led to several useful antigen combinations on taMPs that must be present simultaneously on the surface of the same MP in order to be accounted. That means, we reported several MP surface antigen combinations for the detection and differentiation of liver cancer (here: HCC and CCA).
EV170006 7/8 Homo sapiens Serum dUC Julich-Haertel H 2017 37%

Study summary

Full title
All authors
Julich-Haertel H, Urban SK, Krawczyk M, Willms A, Jankowski K, Patkowski W, Kruk B, Krasnodębski M, Ligocka J, Schwab R, Richardsen I, Schaaf S, Klein A, Gehlert S, Sänger H, Casper M, Banales JM, Schuppan D, Milkiewicz P, Lammert F, Krawczyk M, Lukacs-Kornek V, Kornek M
Journal
J Hepatol
Abstract
BACKGROUND AND AIMS: we previously reported that large extracellular vesicles, specifically AnnexinV (show more...)BACKGROUND AND AIMS: we previously reported that large extracellular vesicles, specifically AnnexinV+EpCAM+CD147+ tumour-associated microparticles (taMPs), facilitate the detection of colorectal carcinoma (CRC), non-small cell lung carcinoma (NSCLC) as well as pancreas carcinoma (PaCa). Here we assess the diagnostic value of taMPs for detection and monitoring of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Specifically, we aim to differentiate liver taMPs from other cancer taMPs, such as CRC and NSCLC. METHODS: fluorescence-activated cell scanning (FACS) was applied to detect various taMP populations in patients' sera that were associated with the presence of a tumour (AnnexinV+EpCAM+CD147+taMPs) or could discriminate between cirrhosis (due to HCV or HBV) and liver cancers (AnnexinV+EpCAM+ASGPR1+ taMPs). In total 172 patients with liver cancer (HCC or CCA), 54 with cirrhosis and no liver neoplasia, 202 control subjects were enrolled. RESULTS: our results indicate that AnnexinV+EpCAM+CD147+ taMPs were elevated in HCC and CCA. Furthermore, AnnexinV+EpCAM+ASGPR1+CD133+ taMPs allowed the distinction of liver malignancies (HCC or CCA) and cirrhosis from tumour-free individuals and, more importantly, from patients carrying other non-liver cancers. In addition, AnnexinV+EpCAM+ASGPR1+ taMPs were increased in liver cancer-bearing patients compared to patients with cirrhosis that lacked any detectable liver malignancy. The smallest size of successfully detected cancers were ranging between 11-15 mm. AnnexinV+EpCAM+ASGPR1+ taMPs decreased at 7 days after curative R0 tumour resection suggesting close correlations with tumour presence. ROC values, sensitivity/specificity scores and positive/negative predictive values (>78%) indicated a potent diagnostic accuracy of AnnexinV+EpCAM+ASGPR1+ taMPs. CONCLUSION: we provide strong evidence that AnnexinV+EpCAM+ASGPR1+ taMPs are a novel biomarker of HCC and CCA liquid biopsy that permit a non-invasive assessment of the presence and possibly the extent of these cancers in patients with advanced liver diseases. LAY SUMMARY: Microparticles (MPs) are small vesicles that bleb from the membrane of every cell, including cancer cells, and are released to circulate in the bloodstream. Since their surface composition is similar to the surface of their underlying parental cell, MPs from the bloodstream can be isolated and by screening their surface components, the presence of their parental cells can be identified. This way, it was possible to detect and discriminate between patients bearing liver cancer and chronic liver cirrhosis. (hide)
EV-METRIC
37% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
microparticle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
284.4 (pelleting)
Protein markers
EV: ANXA5/ EpCAM/ CD133/ ASGPR1
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
Cholangiocarcinoma
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting: time(min)
60
Pelleting: rotor type
FA-45-24-11
Pelleting: speed (g)
20000
Pelleting: adjusted k-factor
284.4
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry
Type of Flow cytometry
MACSQuant® Analyzer 10
Calibration bead size
0.2,0.5
Extra information
We characterised various tumor-associated MPs (taMPs) in serum from various cancer patients aiming for the detection of liver cancer and differentiation from healthy subjects and other non-liver cancer entities. This led to several useful antigen combinations on taMPs that must be present simultaneously on the surface of the same MP in order to be accounted. That means, we reported several MP surface antigen combinations for the detection and differentiation of liver cancer (here: HCC and CCA).
EV170006 8/8 Homo sapiens Serum dUC Julich-Haertel H 2017 37%

Study summary

Full title
All authors
Julich-Haertel H, Urban SK, Krawczyk M, Willms A, Jankowski K, Patkowski W, Kruk B, Krasnodębski M, Ligocka J, Schwab R, Richardsen I, Schaaf S, Klein A, Gehlert S, Sänger H, Casper M, Banales JM, Schuppan D, Milkiewicz P, Lammert F, Krawczyk M, Lukacs-Kornek V, Kornek M
Journal
J Hepatol
Abstract
BACKGROUND AND AIMS: we previously reported that large extracellular vesicles, specifically AnnexinV (show more...)BACKGROUND AND AIMS: we previously reported that large extracellular vesicles, specifically AnnexinV+EpCAM+CD147+ tumour-associated microparticles (taMPs), facilitate the detection of colorectal carcinoma (CRC), non-small cell lung carcinoma (NSCLC) as well as pancreas carcinoma (PaCa). Here we assess the diagnostic value of taMPs for detection and monitoring of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Specifically, we aim to differentiate liver taMPs from other cancer taMPs, such as CRC and NSCLC. METHODS: fluorescence-activated cell scanning (FACS) was applied to detect various taMP populations in patients' sera that were associated with the presence of a tumour (AnnexinV+EpCAM+CD147+taMPs) or could discriminate between cirrhosis (due to HCV or HBV) and liver cancers (AnnexinV+EpCAM+ASGPR1+ taMPs). In total 172 patients with liver cancer (HCC or CCA), 54 with cirrhosis and no liver neoplasia, 202 control subjects were enrolled. RESULTS: our results indicate that AnnexinV+EpCAM+CD147+ taMPs were elevated in HCC and CCA. Furthermore, AnnexinV+EpCAM+ASGPR1+CD133+ taMPs allowed the distinction of liver malignancies (HCC or CCA) and cirrhosis from tumour-free individuals and, more importantly, from patients carrying other non-liver cancers. In addition, AnnexinV+EpCAM+ASGPR1+ taMPs were increased in liver cancer-bearing patients compared to patients with cirrhosis that lacked any detectable liver malignancy. The smallest size of successfully detected cancers were ranging between 11-15 mm. AnnexinV+EpCAM+ASGPR1+ taMPs decreased at 7 days after curative R0 tumour resection suggesting close correlations with tumour presence. ROC values, sensitivity/specificity scores and positive/negative predictive values (>78%) indicated a potent diagnostic accuracy of AnnexinV+EpCAM+ASGPR1+ taMPs. CONCLUSION: we provide strong evidence that AnnexinV+EpCAM+ASGPR1+ taMPs are a novel biomarker of HCC and CCA liquid biopsy that permit a non-invasive assessment of the presence and possibly the extent of these cancers in patients with advanced liver diseases. LAY SUMMARY: Microparticles (MPs) are small vesicles that bleb from the membrane of every cell, including cancer cells, and are released to circulate in the bloodstream. Since their surface composition is similar to the surface of their underlying parental cell, MPs from the bloodstream can be isolated and by screening their surface components, the presence of their parental cells can be identified. This way, it was possible to detect and discriminate between patients bearing liver cancer and chronic liver cirrhosis. (hide)
EV-METRIC
37% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
microparticle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
284.4 (pelleting)
Protein markers
EV: ANXA5/ EpCAM/ CD133/ ASGPR1
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
Non small cell lung carcinoma
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting: time(min)
60
Pelleting: rotor type
FA-45-24-11
Pelleting: speed (g)
20000
Pelleting: adjusted k-factor
284.4
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry
Type of Flow cytometry
MACSQuant® Analyzer 10
Calibration bead size
0.2,0.5
Extra information
We characterised various tumor-associated MPs (taMPs) in serum from various cancer patients aiming for the detection of liver cancer and differentiation from healthy subjects and other non-liver cancer entities. This led to several useful antigen combinations on taMPs that must be present simultaneously on the surface of the same MP in order to be accounted. That means, we reported several MP surface antigen combinations for the detection and differentiation of liver cancer (here: HCC and CCA).
EV170054 2/5 Homo sapiens Urine dUC
Filtration
SEC
Ultrafiltration
Gheinani AH 2017 33%

Study summary

Full title
All authors
Gheinani AH, Vögeli M, Baumgartner U, Vassella E, Draeger A, Burkhard FC, Monastyrskaya K
Journal
Sci Rep
Abstract
Circulating miRNAs are detected in extracellular space and body fluids such as urine. Circulating RN (show more...)Circulating miRNAs are detected in extracellular space and body fluids such as urine. Circulating RNAs can be packaged in secreted urinary extracellular vesicles (uEVs) and thus protected from degradation. Urinary exosome preparations might contain specific miRNAs, relevant as biomarkers in renal and bladder diseases. Major difficulties in application of uEVs into the clinical environment are the high variability and low reproducibility of uEV isolation methods. Here we used five different methods to isolate uEVs and compared the size distribution, morphology, yield, presence of exosomal protein markers and RNA content of uEVs. We present an optimized ultracentrifugation and size exclusion chromatography approach for highly reproducible isolation for 50-150 nm uEVs, corresponding to the exosomes, from 50 ml urine. We profiled the miRNA content of uEVs and total urine from the same samples with the NanoString platform and validated the data using qPCR. Our results indicate that 18 miRNAs, robustly detected in uEVs were always present in the total urine. However, 15 miRNAs could be detected only in the total urine preparations and might represent naked circulating miRNA species. This is a novel unbiased and reproducible strategy for uEVs isolation, content normalization and miRNA cargo analysis, suitable for biomarker discovery studies. (hide)
EV-METRIC
33% (70th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration + SEC + Ultrafiltration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Urine
Sample Condition
Control condition
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Polyethersulfone (PES)
Size-exclusion chromatography
Total column volume (mL)
23
Sample volume/column (mL)
0.4
Resin type
Sepharose CL-2B
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Protein Concentration
5.7
Characterization: Particle analysis
NTA
Report type
Mode;mean;size range/distribution;D10;D50;D90
Reported size (nm)
113
EV concentration
Yes
Particle yield
see Fig1A
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV170054 3/5 Homo sapiens Urine dUC
Other
Gheinani AH 2017 33%

Study summary

Full title
All authors
Gheinani AH, Vögeli M, Baumgartner U, Vassella E, Draeger A, Burkhard FC, Monastyrskaya K
Journal
Sci Rep
Abstract
Circulating miRNAs are detected in extracellular space and body fluids such as urine. Circulating RN (show more...)Circulating miRNAs are detected in extracellular space and body fluids such as urine. Circulating RNAs can be packaged in secreted urinary extracellular vesicles (uEVs) and thus protected from degradation. Urinary exosome preparations might contain specific miRNAs, relevant as biomarkers in renal and bladder diseases. Major difficulties in application of uEVs into the clinical environment are the high variability and low reproducibility of uEV isolation methods. Here we used five different methods to isolate uEVs and compared the size distribution, morphology, yield, presence of exosomal protein markers and RNA content of uEVs. We present an optimized ultracentrifugation and size exclusion chromatography approach for highly reproducible isolation for 50-150 nm uEVs, corresponding to the exosomes, from 50 ml urine. We profiled the miRNA content of uEVs and total urine from the same samples with the NanoString platform and validated the data using qPCR. Our results indicate that 18 miRNAs, robustly detected in uEVs were always present in the total urine. However, 15 miRNAs could be detected only in the total urine preparations and might represent naked circulating miRNA species. This is a novel unbiased and reproducible strategy for uEVs isolation, content normalization and miRNA cargo analysis, suitable for biomarker discovery studies. (hide)
EV-METRIC
33% (70th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Other
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Urine
Sample Condition
Control condition
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Other
Name other isolation method
PEG precipitation
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Protein Concentration
8.4
Characterization: Particle analysis
NTA
Report type
Mode;mean;size range/distribution;D10;D50;D90
Reported size (nm)
138
EV concentration
Yes
Particle yield
see Fig1A
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV170054 4/5 Homo sapiens Urine dUC
Other
SEC
Gheinani AH 2017 33%

Study summary

Full title
All authors
Gheinani AH, Vögeli M, Baumgartner U, Vassella E, Draeger A, Burkhard FC, Monastyrskaya K
Journal
Sci Rep
Abstract
Circulating miRNAs are detected in extracellular space and body fluids such as urine. Circulating RN (show more...)Circulating miRNAs are detected in extracellular space and body fluids such as urine. Circulating RNAs can be packaged in secreted urinary extracellular vesicles (uEVs) and thus protected from degradation. Urinary exosome preparations might contain specific miRNAs, relevant as biomarkers in renal and bladder diseases. Major difficulties in application of uEVs into the clinical environment are the high variability and low reproducibility of uEV isolation methods. Here we used five different methods to isolate uEVs and compared the size distribution, morphology, yield, presence of exosomal protein markers and RNA content of uEVs. We present an optimized ultracentrifugation and size exclusion chromatography approach for highly reproducible isolation for 50-150 nm uEVs, corresponding to the exosomes, from 50 ml urine. We profiled the miRNA content of uEVs and total urine from the same samples with the NanoString platform and validated the data using qPCR. Our results indicate that 18 miRNAs, robustly detected in uEVs were always present in the total urine. However, 15 miRNAs could be detected only in the total urine preparations and might represent naked circulating miRNA species. This is a novel unbiased and reproducible strategy for uEVs isolation, content normalization and miRNA cargo analysis, suitable for biomarker discovery studies. (hide)
EV-METRIC
33% (70th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Other + SEC
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Urine
Sample Condition
Control condition
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Size-exclusion chromatography
Total column volume (mL)
23
Sample volume/column (mL)
0.4
Resin type
Sepharose CL-2B
Other
Name other isolation method
PEG precipitation
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Protein Concentration
2.3
Characterization: Particle analysis
NTA
Report type
Mode;mean;size range/distribution;D10;D50;D90
Reported size (nm)
106
EV concentration
Yes
Particle yield
see Fig1A
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV170047 6/8 Homo sapiens Cell culture supernatant (Differential) (ultra)centrifugation Soekmadji C 2017 33%

Study summary

Full title
All authors
Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM, Hill MM, Nelson CC
Journal
Oncotarget
Abstract
Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by (show more...)Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by steroid hormones, particularly androgens, and the extracellular environment. Herein, we identify the secretion of CD9 positive extracellular vesicles (EV) by LNCaP and DUCaP PCa cells in response to dihydrotestosterone (DHT) and use nano-LC-MS/MS to identify the proteins present in these EV. Subsequent bioinformatic and pathway analyses of the mass spectrometry data identified pathologically relevant pathways that may be altered by EV contents. Western blot and CD9 EV TR-FIA assay confirmed a specific increase in the amount of CD9 positive EV in DHT-treated LNCaP and DUCaP cells and treatment of cells with EV enriched with CD9 after DHT exposure can induce proliferation in androgen-deprived conditions. siRNA knockdown of endogenous CD9 in LNCaPs reduced cellular proliferation and expression of AR and prostate specific antigen (PSA) however knockdown of AR did not alter CD9 expression, also implicating CD9 as an upstream regulator of AR. Moreover CD9 positive EV were also found to be significantly higher in plasma from prostate cancer patients in comparison with benign prostatic hyperplasia patients. We conclude that CD9 positive EV are involved in mediating paracrine signalling and contributing toward prostate cancer progression. (hide)
EV-METRIC
33% (72nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD9/ TSG101
non-EV: None
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
DHT
EV-producing cells
DUCaP
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
120
Pelleting: speed (g)
100000
Wash: time (min)
90
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Concentration
1.6
Western Blot
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ CD9/ TSG101
Not detected EV-associated proteins
PSA
Proteomics database
No
Characterization: Particle analysis
EV170047 7/8 Homo sapiens Cell culture supernatant (Differential) (ultra)centrifugation Soekmadji C 2017 33%

Study summary

Full title
All authors
Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM, Hill MM, Nelson CC
Journal
Oncotarget
Abstract
Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by (show more...)Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by steroid hormones, particularly androgens, and the extracellular environment. Herein, we identify the secretion of CD9 positive extracellular vesicles (EV) by LNCaP and DUCaP PCa cells in response to dihydrotestosterone (DHT) and use nano-LC-MS/MS to identify the proteins present in these EV. Subsequent bioinformatic and pathway analyses of the mass spectrometry data identified pathologically relevant pathways that may be altered by EV contents. Western blot and CD9 EV TR-FIA assay confirmed a specific increase in the amount of CD9 positive EV in DHT-treated LNCaP and DUCaP cells and treatment of cells with EV enriched with CD9 after DHT exposure can induce proliferation in androgen-deprived conditions. siRNA knockdown of endogenous CD9 in LNCaPs reduced cellular proliferation and expression of AR and prostate specific antigen (PSA) however knockdown of AR did not alter CD9 expression, also implicating CD9 as an upstream regulator of AR. Moreover CD9 positive EV were also found to be significantly higher in plasma from prostate cancer patients in comparison with benign prostatic hyperplasia patients. We conclude that CD9 positive EV are involved in mediating paracrine signalling and contributing toward prostate cancer progression. (hide)
EV-METRIC
33% (72nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD9/ TSG101
non-EV: None
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Charcoal stripped serum
EV-producing cells
DUCaP
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
120
Pelleting: speed (g)
100000
Wash: time (min)
90
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Concentration
1.2
Western Blot
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ CD9/ TSG101
Not detected EV-associated proteins
PSA
Proteomics database
No
Characterization: Particle analysis
EV170047 8/8 Homo sapiens Cell culture supernatant (Differential) (ultra)centrifugation Soekmadji C 2017 33%

Study summary

Full title
All authors
Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM, Hill MM, Nelson CC
Journal
Oncotarget
Abstract
Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by (show more...)Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by steroid hormones, particularly androgens, and the extracellular environment. Herein, we identify the secretion of CD9 positive extracellular vesicles (EV) by LNCaP and DUCaP PCa cells in response to dihydrotestosterone (DHT) and use nano-LC-MS/MS to identify the proteins present in these EV. Subsequent bioinformatic and pathway analyses of the mass spectrometry data identified pathologically relevant pathways that may be altered by EV contents. Western blot and CD9 EV TR-FIA assay confirmed a specific increase in the amount of CD9 positive EV in DHT-treated LNCaP and DUCaP cells and treatment of cells with EV enriched with CD9 after DHT exposure can induce proliferation in androgen-deprived conditions. siRNA knockdown of endogenous CD9 in LNCaPs reduced cellular proliferation and expression of AR and prostate specific antigen (PSA) however knockdown of AR did not alter CD9 expression, also implicating CD9 as an upstream regulator of AR. Moreover CD9 positive EV were also found to be significantly higher in plasma from prostate cancer patients in comparison with benign prostatic hyperplasia patients. We conclude that CD9 positive EV are involved in mediating paracrine signalling and contributing toward prostate cancer progression. (hide)
EV-METRIC
33% (72nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD9/ TSG101
non-EV: None
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
DUCaP
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
120
Pelleting: speed (g)
100000
Wash: time (min)
90
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Concentration
1.1
Western Blot
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ CD9/ TSG101
Not detected EV-associated proteins
PSA
Characterization: Particle analysis
EV170024 1/3 Homo sapiens Cell culture supernatant dUC
Filtration
Volgers C 2017 33%

Study summary

Full title
All authors
Volgers C, Benedikter BJ, Grauls GE, Savelkoul PHM, Stassen FRM
Journal
Aging (Albany NY)
Abstract
During infection, the release of nano-sized membrane vesicle is a process which is common both for b (show more...)During infection, the release of nano-sized membrane vesicle is a process which is common both for bacteria and host cells. Host cell-derived membrane vesicles can be involved in innate and adaptive immunity whereas bacterial membrane vesicles can contribute to bacterial pathogenicity. To study the contribution of both membrane vesicle populations during infection is highly complicated as most vesicles fall within a similar size range of 30-300nm. Specialized techniques for purification are required and often no single technique complies on its own. Moreover, techniques for vesicle quantification are either complicated to use or do not distinguish between host cell-derived and bacterial membrane vesicle subpopulations. Here we demonstrate a bead-based platform that allows a semi-quantitatively analysis by flow-cytometry of bacterial and host-cell derived membrane vesicles. We show this method can be used to study heterogeneous and complex vesicle populations composed of bacterial and host-cell membrane vesicles. The easy accessible design of the protocol makes it also highly suitable for screening procedures to assess how intrinsic and environmental factors affect vesicle release. (hide)
EV-METRIC
33% (72nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
membrane vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Adj. k-factor
156.9 (pelleting)
Protein markers
EV: CD63/ CD81
non-EV: None
Proteomics
no
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
THP1
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63,CD81
Flow cytometry specific beads
Selected surface protein(s)
CD63
EV170024 2/3 Moraxella catarrhalis Cell culture supernatant dUC
Filtration
Volgers C 2017 33%

Study summary

Full title
All authors
Volgers C, Benedikter BJ, Grauls GE, Savelkoul PHM, Stassen FRM
Journal
Aging (Albany NY)
Abstract
During infection, the release of nano-sized membrane vesicle is a process which is common both for b (show more...)During infection, the release of nano-sized membrane vesicle is a process which is common both for bacteria and host cells. Host cell-derived membrane vesicles can be involved in innate and adaptive immunity whereas bacterial membrane vesicles can contribute to bacterial pathogenicity. To study the contribution of both membrane vesicle populations during infection is highly complicated as most vesicles fall within a similar size range of 30-300nm. Specialized techniques for purification are required and often no single technique complies on its own. Moreover, techniques for vesicle quantification are either complicated to use or do not distinguish between host cell-derived and bacterial membrane vesicle subpopulations. Here we demonstrate a bead-based platform that allows a semi-quantitatively analysis by flow-cytometry of bacterial and host-cell derived membrane vesicles. We show this method can be used to study heterogeneous and complex vesicle populations composed of bacterial and host-cell membrane vesicles. The easy accessible design of the protocol makes it also highly suitable for screening procedures to assess how intrinsic and environmental factors affect vesicle release. (hide)
EV-METRIC
33% (72nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
membrane vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Adj. k-factor
156.9 (pelleting)
Protein markers
EV: Moraxella catarrhalis antigen
non-EV: None
Proteomics
no
Show all info
Study aim
New methodological development
Sample
Species
Moraxella catarrhalis
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
Moraxella catarrhalis
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Moraxella catarrhalis antigen
Flow cytometry specific beads
Selected surface protein(s)
Moraxella catarrhalis antigen
Characterization: Particle analysis
TRPS
EV concentration
Yes
Particle yield
1.50E+09 particles/ml start sample
EV170024 3/3 Pseudomonas aeruginosa Cell culture supernatant dUC
Filtration
Volgers C 2017 33%

Study summary

Full title
All authors
Volgers C, Benedikter BJ, Grauls GE, Savelkoul PHM, Stassen FRM
Journal
Aging (Albany NY)
Abstract
During infection, the release of nano-sized membrane vesicle is a process which is common both for b (show more...)During infection, the release of nano-sized membrane vesicle is a process which is common both for bacteria and host cells. Host cell-derived membrane vesicles can be involved in innate and adaptive immunity whereas bacterial membrane vesicles can contribute to bacterial pathogenicity. To study the contribution of both membrane vesicle populations during infection is highly complicated as most vesicles fall within a similar size range of 30-300nm. Specialized techniques for purification are required and often no single technique complies on its own. Moreover, techniques for vesicle quantification are either complicated to use or do not distinguish between host cell-derived and bacterial membrane vesicle subpopulations. Here we demonstrate a bead-based platform that allows a semi-quantitatively analysis by flow-cytometry of bacterial and host-cell derived membrane vesicles. We show this method can be used to study heterogeneous and complex vesicle populations composed of bacterial and host-cell membrane vesicles. The easy accessible design of the protocol makes it also highly suitable for screening procedures to assess how intrinsic and environmental factors affect vesicle release. (hide)
EV-METRIC
33% (72nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
membrane vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Adj. k-factor
156.9 (pelleting)
Protein markers
EV: Pseudomonas aeruginosa antigen
non-EV: None
Proteomics
no
Show all info
Study aim
New methodological development
Sample
Species
Pseudomonas aeruginosa
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
Pseudomonas aeruginosa
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Pseudomonas aeruginosa antigen
Flow cytometry specific beads
Selected surface protein(s)
Pseudomonas aeruginosa antigen
Characterization: Particle analysis
TRPS
EV concentration
Yes
Particle yield
1.00E+09 particles/ml start sample
EV170000 1/2 Mus musculus Serum dUC
Filtration
Thomou T 2017 29%

Study summary

Full title
All authors
Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, Rao TN, Winnay JN, Garcia-Martin R, Grinspoon SK, Gorden P, Kahn
Journal
Nature
Abstract
Adipose tissue is a major site of energy storage and has a role in the regulation of metabolism thro (show more...)Adipose tissue is a major site of energy storage and has a role in the regulation of metabolism through the release of adipokines. Here we show that mice with an adipose-tissue-specific knockout of the microRNA (miRNA)-processing enzyme Dicer (ADicerKO), as well as humans with lipodystrophy, exhibit a substantial decrease in levels of circulating exosomal miRNAs. Transplantation of both white and brown adipose tissue-brown especially-into ADicerKO mice restores the level of numerous circulating miRNAs that are associated with an improvement in glucose tolerance and a reduction in hepatic Fgf21 mRNA and circulating FGF21. This gene regulation can be mimicked by the administration of normal, but not ADicerKO, serum exosomes. Expression of a human-specific miRNA in the brown adipose tissue of one mouse in vivo can also regulate its 3' UTR reporter in the liver of another mouse through serum exosomal transfer. Thus, adipose tissue constitutes an important source of circulating exosomal miRNAs, which can regulate gene expression in distant tissues and thereby serve as a previously undescribed form of adipokine. (hide)
EV-METRIC
29% (83rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
exosome
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Protein markers
EV: CD63/ CD9
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Serum
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
60
Pelleting: speed (g)
100000
Wash: time (min)
60
Wash: speed (g)
100000
Characterization: Particle analysis
TRPS
Report type
Size range/distribution
EM
EM-type
Transmission-EM/ Immune-EM
Image type
Close-up, Wide-field
Report size (nm)
80-200
Other particle analysis name(1)
EXOCET ELISA assay
EV-concentration
Yes
EV170036 8/12 Homo sapiens Serum dUC
Filtration
Krafft C 2017 28%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
28% (80th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
EV12
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Adj. k-factor
213.2 (pelleting)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
Benign prostate hyperplasia
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
213.2
Filtration steps
0.22µm or 0.2µm
EV-subtype
Distinction between multiple subtypes
we proceeded with IR and RAMAN analysis of EVs isolated by 12000 x g (frequently designated as micro
Protein Concentration Method
microBCA
Protein Concentration
4-6 for healty donors in EV12; 100 in cancer patients;
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-200
Particle yield
1.10E+11 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170036 10/12 Homo sapiens Serum dUC
Filtration
Krafft C 2017 28%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
28% (80th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
EV120
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Adj. k-factor
213.2 (pelleting)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
Prostate cancer
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
213.2
Filtration steps
0.22µm or 0.2µm
EV-subtype
Distinction between multiple subtypes
we proceeded with IR and RAMAN analysis of EVs isolated by 12000 x g (frequently designated as micro
Protein Concentration Method
microBCA
Protein Concentration
4-6 for healty donors in EV12; 100 in cancer patients;
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-200
Particle yield
1.00E+11 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170005 1/4 Homo sapiens Cell culture supernatant dUC
SEC
UF
Suárez H 2017 28%

Study summary

Full title
All authors
Suárez H, Gámez-Valero A, Reyes R, López-Martín S, Rodríguez MJ, Carrascosa JL, Cabañas C, Borràs FE, Yáñez-Mó M
Journal
Sci Rep
Abstract
Most experimental approaches commonly employed for the characterization and quantitation of EVs are (show more...)Most experimental approaches commonly employed for the characterization and quantitation of EVs are time consuming, require of specialized instrumentation and often are rather inaccurate. To circumvent the caveats imposed by EV small size, we used general and specific membrane markers in bead assisted flow cytometry, to provide a semi-quantitative measure of EV content in a given sample. EVs were isolated from in vitro cultured cells-conditioned medium and biological fluids by size exclusion chromatography and coupled to latex beads to allow their detection by standard flow cytometers. Our analyses demonstrate a linear correlation between EV concentration and Mean Fluorescence Intensity values in samples cleared of protein contaminants. Comparison with one of the most widespread method such as NTA, suggests a similar linear range and reliable accuracy to detect saturation. However, although detection of the different biomarkers is feasible when tested on ultracentrifugation-enriched samples, protein contamination impairs quantitation of this type of samples by bead-based flow cytometry. Thus, we provide evidence that bead-assisted flow cytometry method is an accurate and reliable method for the semiquantitative bulk analysis of EVs, which could be easily implemented in most laboratories. (hide)
EV-METRIC
28% (63rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + SEC + UF
Protein markers
EV: CD9/ CD63/ CD81/ MHC1/ CD59
non-EV: None
Proteomics
no
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
SK-MEL103
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Ultra filtration
Cut-off size (kDa)
Not spec
Membrane type
Not specified
Size-exclusion chromatography
Total column volume (mL)
20
Sample volume/column (mL)
1.5
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Concentration
148.16
Characterization: Particle analysis
NTA
Report type
Median
EV170005 4/4 Homo sapiens Cell culture supernatant dUC
SEC
UF
Suárez H 2017 28%

Study summary

Full title
All authors
Suárez H, Gámez-Valero A, Reyes R, López-Martín S, Rodríguez MJ, Carrascosa JL, Cabañas C, Borràs FE, Yáñez-Mó M
Journal
Sci Rep
Abstract
Most experimental approaches commonly employed for the characterization and quantitation of EVs are (show more...)Most experimental approaches commonly employed for the characterization and quantitation of EVs are time consuming, require of specialized instrumentation and often are rather inaccurate. To circumvent the caveats imposed by EV small size, we used general and specific membrane markers in bead assisted flow cytometry, to provide a semi-quantitative measure of EV content in a given sample. EVs were isolated from in vitro cultured cells-conditioned medium and biological fluids by size exclusion chromatography and coupled to latex beads to allow their detection by standard flow cytometers. Our analyses demonstrate a linear correlation between EV concentration and Mean Fluorescence Intensity values in samples cleared of protein contaminants. Comparison with one of the most widespread method such as NTA, suggests a similar linear range and reliable accuracy to detect saturation. However, although detection of the different biomarkers is feasible when tested on ultracentrifugation-enriched samples, protein contamination impairs quantitation of this type of samples by bead-based flow cytometry. Thus, we provide evidence that bead-assisted flow cytometry method is an accurate and reliable method for the semiquantitative bulk analysis of EVs, which could be easily implemented in most laboratories. (hide)
EV-METRIC
28% (63rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + SEC + UF
Protein markers
EV: CD9/ CD63/ CD81/ MHC1/ CD59
non-EV: None
Proteomics
no
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
Primary T-lymphoblasts
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Ultra filtration
Cut-off size (kDa)
Not spec
Membrane type
Not specified
Size-exclusion chromatography
Total column volume (mL)
20
Sample volume/column (mL)
1.5
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Concentration
116.85
Characterization: Particle analysis
NTA
Report type
Median
EV170005 3/4 Homo sapiens Cell culture supernatant dUC Suárez H 2017 25%

Study summary

Full title
All authors
Suárez H, Gámez-Valero A, Reyes R, López-Martín S, Rodríguez MJ, Carrascosa JL, Cabañas C, Borràs FE, Yáñez-Mó M
Journal
Sci Rep
Abstract
Most experimental approaches commonly employed for the characterization and quantitation of EVs are (show more...)Most experimental approaches commonly employed for the characterization and quantitation of EVs are time consuming, require of specialized instrumentation and often are rather inaccurate. To circumvent the caveats imposed by EV small size, we used general and specific membrane markers in bead assisted flow cytometry, to provide a semi-quantitative measure of EV content in a given sample. EVs were isolated from in vitro cultured cells-conditioned medium and biological fluids by size exclusion chromatography and coupled to latex beads to allow their detection by standard flow cytometers. Our analyses demonstrate a linear correlation between EV concentration and Mean Fluorescence Intensity values in samples cleared of protein contaminants. Comparison with one of the most widespread method such as NTA, suggests a similar linear range and reliable accuracy to detect saturation. However, although detection of the different biomarkers is feasible when tested on ultracentrifugation-enriched samples, protein contamination impairs quantitation of this type of samples by bead-based flow cytometry. Thus, we provide evidence that bead-assisted flow cytometry method is an accurate and reliable method for the semiquantitative bulk analysis of EVs, which could be easily implemented in most laboratories. (hide)
EV-METRIC
25% (61st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
264.9 (pelleting) / 264.9 (washing)
Protein markers
EV: CD9/ CD59
non-EV: None
Proteomics
no
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
SK-MEL103
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
120
Pelleting: rotor type
AH-627
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
264.9
Wash: time (min)
120
Wash: Rotor Type
AH-627
Wash: speed (g)
100000
Wash: adjusted k-factor
264.9
Characterization: Protein analysis
Protein Concentration Method
BCA
Characterization: Particle analysis
NTA
Report type
Median
EV170042 1/4 Homo sapiens Urine dUC Silvers CR 2017 22%

Study summary

Full title
All authors
Silvers CR, Miyamoto H, Messing EM, Netto GJ, Lee YF
Journal
J Cell Sci
Abstract
The mechanisms of bladder cancer progression are unknown, and new treatments and biomarkers are need (show more...)The mechanisms of bladder cancer progression are unknown, and new treatments and biomarkers are needed. Patient urinary extracellular vesicles (EVs) derive in part from bladder cancer cells and contain a specific protein cargo which may provide information about the disease. We conducted a proteomics study comparing EVs from the muscle-invasive bladder cancer (MIBC) cell line TCCSUP to EVs from normal urothelial line SVHUC. GO term analysis showed that TCCSUP EVs are enriched in proteins associated with the cell membrane, extracellular matrix, and inflammation and angiogenesis signaling pathways. Proteins characteristic of cancer EVs were further screened at the mRNA level in bladder cancer cell lines. In Western blots, three of six proteins examined showed greater than fifteenfold enrichment in patient urinary EVs compared to healthy volunteers (n = 6). Finally, we performed immunohistochemical staining of bladder tissue microarrays for three proteins of interest. One of them, transaldolase (TALDO1), is a nearly ubiquitous enzyme and normally thought to reside in the cytoplasm. To our surprise, nuclei were stained for transaldolase in 94% of MIBC tissue samples (n = 51). While cytoplasmic transaldolase was found in 89-90% of both normal urothelium (n = 79) and non-muscle-invasive samples (n = 71), the rate falls to 39% in MIBC samples (P < 0.001), and negative cytoplasmic staining was correlated with worse cancer-specific survival in MIBC patients (P = 0.008). The differential EV proteomics strategy reported here successfully identified a number of proteins associated with bladder cancer and points the way to future investigation. (hide)
EV-METRIC
22% (51st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: Alix/ AnnexinVII/ EHD4
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker, Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Urine
Sample Condition
Control condition
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting: time(min)
70
Pelleting: speed (g)
20000
Wash: time (min)
70
Wash: speed (g)
20000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Detected EV-associated proteins
Alix, Annexin VII, EHD4
EV170042 2/4 Homo sapiens Cell culture supernatant dUC Silvers CR 2017 22%

Study summary

Full title
All authors
Silvers CR, Miyamoto H, Messing EM, Netto GJ, Lee YF
Journal
J Cell Sci
Abstract
The mechanisms of bladder cancer progression are unknown, and new treatments and biomarkers are need (show more...)The mechanisms of bladder cancer progression are unknown, and new treatments and biomarkers are needed. Patient urinary extracellular vesicles (EVs) derive in part from bladder cancer cells and contain a specific protein cargo which may provide information about the disease. We conducted a proteomics study comparing EVs from the muscle-invasive bladder cancer (MIBC) cell line TCCSUP to EVs from normal urothelial line SVHUC. GO term analysis showed that TCCSUP EVs are enriched in proteins associated with the cell membrane, extracellular matrix, and inflammation and angiogenesis signaling pathways. Proteins characteristic of cancer EVs were further screened at the mRNA level in bladder cancer cell lines. In Western blots, three of six proteins examined showed greater than fifteenfold enrichment in patient urinary EVs compared to healthy volunteers (n = 6). Finally, we performed immunohistochemical staining of bladder tissue microarrays for three proteins of interest. One of them, transaldolase (TALDO1), is a nearly ubiquitous enzyme and normally thought to reside in the cytoplasm. To our surprise, nuclei were stained for transaldolase in 94% of MIBC tissue samples (n = 51). While cytoplasmic transaldolase was found in 89-90% of both normal urothelium (n = 79) and non-muscle-invasive samples (n = 71), the rate falls to 39% in MIBC samples (P < 0.001), and negative cytoplasmic staining was correlated with worse cancer-specific survival in MIBC patients (P = 0.008). The differential EV proteomics strategy reported here successfully identified a number of proteins associated with bladder cancer and points the way to future investigation. (hide)
EV-METRIC
22% (53rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: Alix/ CD9/ TSG101
non-EV: None
Proteomics
yes
Show all info
Study aim
Biomarker, Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
TCCSUP
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
>=18h at >= 100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting: time(min)
70
Pelleting: speed (g)
20000
Wash: time (min)
70
Wash: speed (g)
20000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Detected EV-associated proteins
Alix, CD9, TSG101
Proteomics database
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
35-300
EV170042 3/4 Homo sapiens Urine dUC Silvers CR 2017 22%

Study summary

Full title
All authors
Silvers CR, Miyamoto H, Messing EM, Netto GJ, Lee YF
Journal
J Cell Sci
Abstract
The mechanisms of bladder cancer progression are unknown, and new treatments and biomarkers are need (show more...)The mechanisms of bladder cancer progression are unknown, and new treatments and biomarkers are needed. Patient urinary extracellular vesicles (EVs) derive in part from bladder cancer cells and contain a specific protein cargo which may provide information about the disease. We conducted a proteomics study comparing EVs from the muscle-invasive bladder cancer (MIBC) cell line TCCSUP to EVs from normal urothelial line SVHUC. GO term analysis showed that TCCSUP EVs are enriched in proteins associated with the cell membrane, extracellular matrix, and inflammation and angiogenesis signaling pathways. Proteins characteristic of cancer EVs were further screened at the mRNA level in bladder cancer cell lines. In Western blots, three of six proteins examined showed greater than fifteenfold enrichment in patient urinary EVs compared to healthy volunteers (n = 6). Finally, we performed immunohistochemical staining of bladder tissue microarrays for three proteins of interest. One of them, transaldolase (TALDO1), is a nearly ubiquitous enzyme and normally thought to reside in the cytoplasm. To our surprise, nuclei were stained for transaldolase in 94% of MIBC tissue samples (n = 51). While cytoplasmic transaldolase was found in 89-90% of both normal urothelium (n = 79) and non-muscle-invasive samples (n = 71), the rate falls to 39% in MIBC samples (P < 0.001), and negative cytoplasmic staining was correlated with worse cancer-specific survival in MIBC patients (P = 0.008). The differential EV proteomics strategy reported here successfully identified a number of proteins associated with bladder cancer and points the way to future investigation. (hide)
EV-METRIC
22% (51st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: Alix/ AnnexinVII/ EHD4/ HEXB/ S100A4/ SNB1
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker, Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Urine
Sample Condition
Bladder cancer
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting: time(min)
70
Pelleting: speed (g)
20000
Wash: time (min)
70
Wash: speed (g)
20000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Detected EV-associated proteins
Alix, Annexin VII, EHD4, HEXB, S100A4, SNB1
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Wide-field
EV170042 4/4 Homo sapiens Cell culture supernatant dUC Silvers CR 2017 14%

Study summary

Full title
All authors
Silvers CR, Miyamoto H, Messing EM, Netto GJ, Lee YF
Journal
J Cell Sci
Abstract
The mechanisms of bladder cancer progression are unknown, and new treatments and biomarkers are need (show more...)The mechanisms of bladder cancer progression are unknown, and new treatments and biomarkers are needed. Patient urinary extracellular vesicles (EVs) derive in part from bladder cancer cells and contain a specific protein cargo which may provide information about the disease. We conducted a proteomics study comparing EVs from the muscle-invasive bladder cancer (MIBC) cell line TCCSUP to EVs from normal urothelial line SVHUC. GO term analysis showed that TCCSUP EVs are enriched in proteins associated with the cell membrane, extracellular matrix, and inflammation and angiogenesis signaling pathways. Proteins characteristic of cancer EVs were further screened at the mRNA level in bladder cancer cell lines. In Western blots, three of six proteins examined showed greater than fifteenfold enrichment in patient urinary EVs compared to healthy volunteers (n = 6). Finally, we performed immunohistochemical staining of bladder tissue microarrays for three proteins of interest. One of them, transaldolase (TALDO1), is a nearly ubiquitous enzyme and normally thought to reside in the cytoplasm. To our surprise, nuclei were stained for transaldolase in 94% of MIBC tissue samples (n = 51). While cytoplasmic transaldolase was found in 89-90% of both normal urothelium (n = 79) and non-muscle-invasive samples (n = 71), the rate falls to 39% in MIBC samples (P < 0.001), and negative cytoplasmic staining was correlated with worse cancer-specific survival in MIBC patients (P = 0.008). The differential EV proteomics strategy reported here successfully identified a number of proteins associated with bladder cancer and points the way to future investigation. (hide)
EV-METRIC
14% (42nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Biomarker, Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
SVHUC
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
>=18h at >= 100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting: time(min)
70
Pelleting: speed (g)
20000
Wash: time (min)
70
Wash: speed (g)
20000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Proteomics database
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
35-300
EV170036 1/12 Homo sapiens Blood plasma dUC Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (46th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Focus vesicles
EV12
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
Prostate cancer
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting: time(min)
90
Pelleting: speed (g)
12000
Protein Concentration Method
microBCA
Protein Concentration
311
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-150
EV concentration
Yes
Particle yield
1.55E+10 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170036 2/12 Homo sapiens Serum dUC Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
EV12
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
Control condition
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting: time(min)
90
Pelleting: speed (g)
12000
Protein Concentration Method
microBCA
Protein Concentration
11.4
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-150
EV concentration
Yes
Particle yield
1.34E+10 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170036 3/12 Homo sapiens Blood plasma dUC
Filtration
Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (46th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Focus vesicles
EV120
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Adj. k-factor
213.2 (pelleting)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
Prostate cancer
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
213.2
Filtration steps
0.22µm or 0.2µm
EV-subtype
Distinction between multiple subtypes
we proceeded with IR and RAMAN analysis of EVs isolated by 12000 x g (frequently designated as micro
Protein Concentration Method
microBCA
Protein Concentration
4-6 for healty donors in EV12; 100 in cancer patients;
Characterization: Particle analysis
Other particle analysis name(1)
Raman spectroscopy
EV170036 4/12 Homo sapiens Blood plasma dUC Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (46th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Focus vesicles
EV120
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
Prostate cancer
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Pelleting: speed (g)
120000
Protein Concentration Method
microBCA
Protein Concentration
311
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-150
EV concentration
Yes
Particle yield
4.28E+10 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170036 5/12 Homo sapiens Blood plasma dUC Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (46th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Focus vesicles
EV120
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
Control condition
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Pelleting: speed (g)
120000
Protein Concentration Method
microBCA
Protein Concentration
9.4
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-150
EV concentration
Yes
Particle yield
1.86E+10 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170036 6/12 Homo sapiens Serum dUC Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
EV120
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
Control condition
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Pelleting: speed (g)
120000
Protein Concentration Method
microBCA
Protein Concentration
1273
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-150
EV concentration
Yes
Particle yield
1.69E+10 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170036 7/12 Homo sapiens Serum dUC Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
EV120
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
Prostate cancer
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Pelleting: speed (g)
120000
Protein Concentration Method
microBCA
Protein Concentration
839.6
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-150
EV concentration
Yes
Particle yield
4.84E+10 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170036 9/12 Homo sapiens Blood plasma dUC
Filtration
Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (46th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Focus vesicles
EV12
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Adj. k-factor
213.2 (pelleting)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
Benign prostate hyperplasia
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
213.2
Filtration steps
0.22µm or 0.2µm
EV-subtype
Distinction between multiple subtypes
we proceeded with IR and RAMAN analysis of EVs isolated by 12000 x g (frequently designated as micro
Protein Concentration Method
microBCA
Protein Concentration
4-6 for healty donors in EV12; 100 in cancer patients;
Characterization: Particle analysis
Other particle analysis name(1)
Raman spectroscopy
EV170036 11/12 Homo sapiens Serum dUC Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
EV12
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
Prostate cancer
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting: time(min)
90
Pelleting: speed (g)
12000
Protein Concentration Method
microBCA
Protein Concentration
255.2
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-150
EV concentration
Yes
Particle yield
2.24E+10 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170036 12/12 Homo sapiens Blood plasma dUC Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (46th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Focus vesicles
EV12
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
Control condition
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting: time(min)
90
Pelleting: speed (g)
12000
Protein Concentration Method
microBCA
Protein Concentration
9.4
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-150
EV concentration
Yes
Particle yield
4.26E+09 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170022 1/5 Streptococcus pneumoniae Cell culture supernatant dUC
Filtration
SEC
UF
Volgers C 2017 14%

Study summary

Full title
All authors
Volgers C, Benedikter BJ, Grauls GE, Hellebrand PHM, Savelkoul PHM, Stassen FRM
Journal
FEMS Microbiol Lett
Abstract
Bacterial infections contribute to the disease progression of chronic obstructive pulmonary disease (show more...)Bacterial infections contribute to the disease progression of chronic obstructive pulmonary disease by stimulating mucus production in the airways. This increased mucus production and other symptoms are often alleviated when patients are treated with mucolytics such as N-acetyl-L-cysteine (NAC). Moreover, NAC has been suggested to inhibit bacterial growth. Bacteria can release membrane vesicles (MVs) in response to stress, and recent studies report a role for these proinflammatory MVs in the pathogenesis of airways disease. Yet, until now it is not clear whether NAC also affects the release of these MVs. This study set out to determine whether NAC, at concentrations reached during high-dose nebulization, affects bacterial growth and MV release of the respiratory pathogens non-typeable Haemophilus influenzae (NTHi), Moraxella catarrhalis (Mrc), Streptococcus pneumoniae (Spn) and Pseudomonas aeruginosa (Psa). We observed that NAC exerted a strong bacteriostatic effect, but also induced the release of proinflammatory MVs by NTHi, Mrc and Psa, but not by Spn. Interestingly, NAC also markedly blunted the release of TNF-α by naive macrophages in response to MVs. This suggests that the application of NAC by nebulization at a high dosage may be beneficial for patients with airway conditions associated with bacterial infections. (hide)
EV-METRIC
14% (42nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
membrane vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration + SEC + UF
Protein markers
EV: Streptococcus pneumoniae antigen
non-EV: None
Proteomics
no
Show all info
Study aim
Function, Biogenesis/cargo sorting
Sample
Species
Streptococcus pneumoniae
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
Streptococcus pneumoniae
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability
95
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
10.5
Sample volume/column (mL)
0.5
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry specific beads
Selected surface protein(s)
Streptococcus pneumoniae antigen
Characterization: Particle analysis
TRPS
EV concentration
Yes
EV170022 2/5 Moraxella catarrhalis Cell culture supernatant dUC
Filtration
SEC
UF
Volgers C 2017 14%

Study summary

Full title
All authors
Volgers C, Benedikter BJ, Grauls GE, Hellebrand PHM, Savelkoul PHM, Stassen FRM
Journal
FEMS Microbiol Lett
Abstract
Bacterial infections contribute to the disease progression of chronic obstructive pulmonary disease (show more...)Bacterial infections contribute to the disease progression of chronic obstructive pulmonary disease by stimulating mucus production in the airways. This increased mucus production and other symptoms are often alleviated when patients are treated with mucolytics such as N-acetyl-L-cysteine (NAC). Moreover, NAC has been suggested to inhibit bacterial growth. Bacteria can release membrane vesicles (MVs) in response to stress, and recent studies report a role for these proinflammatory MVs in the pathogenesis of airways disease. Yet, until now it is not clear whether NAC also affects the release of these MVs. This study set out to determine whether NAC, at concentrations reached during high-dose nebulization, affects bacterial growth and MV release of the respiratory pathogens non-typeable Haemophilus influenzae (NTHi), Moraxella catarrhalis (Mrc), Streptococcus pneumoniae (Spn) and Pseudomonas aeruginosa (Psa). We observed that NAC exerted a strong bacteriostatic effect, but also induced the release of proinflammatory MVs by NTHi, Mrc and Psa, but not by Spn. Interestingly, NAC also markedly blunted the release of TNF-α by naive macrophages in response to MVs. This suggests that the application of NAC by nebulization at a high dosage may be beneficial for patients with airway conditions associated with bacterial infections. (hide)
EV-METRIC
14% (42nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
membrane vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration + SEC + UF
Protein markers
EV: Moraxella catarrhalis antigen
non-EV: None
Proteomics
no
Show all info
Study aim
Function, Biogenesis/cargo sorting
Sample
Species
Moraxella catarrhalis
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
Moraxella catarrhalis
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability
95
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
10.5
Sample volume/column (mL)
0.5
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry specific beads
Selected surface protein(s)
Moraxella catarrhalis antigen
Characterization: Particle analysis
TRPS
EV concentration
Yes
EV170022 3/5 Haemophilus influenzae Cell culture supernatant dUC
Filtration
SEC
UF
Volgers C 2017 14%

Study summary

Full title
All authors
Volgers C, Benedikter BJ, Grauls GE, Hellebrand PHM, Savelkoul PHM, Stassen FRM
Journal
FEMS Microbiol Lett
Abstract
Bacterial infections contribute to the disease progression of chronic obstructive pulmonary disease (show more...)Bacterial infections contribute to the disease progression of chronic obstructive pulmonary disease by stimulating mucus production in the airways. This increased mucus production and other symptoms are often alleviated when patients are treated with mucolytics such as N-acetyl-L-cysteine (NAC). Moreover, NAC has been suggested to inhibit bacterial growth. Bacteria can release membrane vesicles (MVs) in response to stress, and recent studies report a role for these proinflammatory MVs in the pathogenesis of airways disease. Yet, until now it is not clear whether NAC also affects the release of these MVs. This study set out to determine whether NAC, at concentrations reached during high-dose nebulization, affects bacterial growth and MV release of the respiratory pathogens non-typeable Haemophilus influenzae (NTHi), Moraxella catarrhalis (Mrc), Streptococcus pneumoniae (Spn) and Pseudomonas aeruginosa (Psa). We observed that NAC exerted a strong bacteriostatic effect, but also induced the release of proinflammatory MVs by NTHi, Mrc and Psa, but not by Spn. Interestingly, NAC also markedly blunted the release of TNF-α by naive macrophages in response to MVs. This suggests that the application of NAC by nebulization at a high dosage may be beneficial for patients with airway conditions associated with bacterial infections. (hide)
EV-METRIC
14% (42nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
membrane vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration + SEC + UF
Protein markers
EV: non-typeable Haemophilus influenzae antigen
non-EV: None
Proteomics
no
Show all info
Study aim
Function, Biogenesis/cargo sorting
Sample
Species
Haemophilus influenzae
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
non-typeable Haemophilus influenzae
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability
95
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
10.5
Sample volume/column (mL)
0.5
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry specific beads
Selected surface protein(s)
non-typeable Haemophilus influenzae antigen
Characterization: Particle analysis
TRPS
EV concentration
Yes
EV170022 4/5 Homo sapiens Cell culture supernatant dUC
Filtration
SEC
UF
Volgers C 2017 14%

Study summary

Full title
All authors
Volgers C, Benedikter BJ, Grauls GE, Hellebrand PHM, Savelkoul PHM, Stassen FRM
Journal
FEMS Microbiol Lett
Abstract
Bacterial infections contribute to the disease progression of chronic obstructive pulmonary disease (show more...)Bacterial infections contribute to the disease progression of chronic obstructive pulmonary disease by stimulating mucus production in the airways. This increased mucus production and other symptoms are often alleviated when patients are treated with mucolytics such as N-acetyl-L-cysteine (NAC). Moreover, NAC has been suggested to inhibit bacterial growth. Bacteria can release membrane vesicles (MVs) in response to stress, and recent studies report a role for these proinflammatory MVs in the pathogenesis of airways disease. Yet, until now it is not clear whether NAC also affects the release of these MVs. This study set out to determine whether NAC, at concentrations reached during high-dose nebulization, affects bacterial growth and MV release of the respiratory pathogens non-typeable Haemophilus influenzae (NTHi), Moraxella catarrhalis (Mrc), Streptococcus pneumoniae (Spn) and Pseudomonas aeruginosa (Psa). We observed that NAC exerted a strong bacteriostatic effect, but also induced the release of proinflammatory MVs by NTHi, Mrc and Psa, but not by Spn. Interestingly, NAC also markedly blunted the release of TNF-α by naive macrophages in response to MVs. This suggests that the application of NAC by nebulization at a high dosage may be beneficial for patients with airway conditions associated with bacterial infections. (hide)
EV-METRIC
14% (42nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
membrane vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration + SEC + UF
Protein markers
EV: CD63/ CD81
non-EV: None
Proteomics
no
Show all info
Study aim
Function, Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
THP1
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability
95
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
10.5
Sample volume/column (mL)
0.5
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry specific beads
Selected surface protein(s)
CD63
Characterization: Particle analysis
TRPS
EV concentration
Yes
EV170022 5/5 Pseudomonas aeruginosa Cell culture supernatant dUC
Filtration
SEC
UF
Volgers C 2017 14%

Study summary

Full title
All authors
Volgers C, Benedikter BJ, Grauls GE, Hellebrand PHM, Savelkoul PHM, Stassen FRM
Journal
FEMS Microbiol Lett
Abstract
Bacterial infections contribute to the disease progression of chronic obstructive pulmonary disease (show more...)Bacterial infections contribute to the disease progression of chronic obstructive pulmonary disease by stimulating mucus production in the airways. This increased mucus production and other symptoms are often alleviated when patients are treated with mucolytics such as N-acetyl-L-cysteine (NAC). Moreover, NAC has been suggested to inhibit bacterial growth. Bacteria can release membrane vesicles (MVs) in response to stress, and recent studies report a role for these proinflammatory MVs in the pathogenesis of airways disease. Yet, until now it is not clear whether NAC also affects the release of these MVs. This study set out to determine whether NAC, at concentrations reached during high-dose nebulization, affects bacterial growth and MV release of the respiratory pathogens non-typeable Haemophilus influenzae (NTHi), Moraxella catarrhalis (Mrc), Streptococcus pneumoniae (Spn) and Pseudomonas aeruginosa (Psa). We observed that NAC exerted a strong bacteriostatic effect, but also induced the release of proinflammatory MVs by NTHi, Mrc and Psa, but not by Spn. Interestingly, NAC also markedly blunted the release of TNF-α by naive macrophages in response to MVs. This suggests that the application of NAC by nebulization at a high dosage may be beneficial for patients with airway conditions associated with bacterial infections. (hide)
EV-METRIC
14% (42nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
membrane vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration + SEC + UF
Protein markers
EV: Pseudomonas aeruginosa antigen
non-EV: None
Proteomics
no
Show all info
Study aim
Function, Biogenesis/cargo sorting
Sample
Species
Pseudomonas aeruginosa
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
Pseudomonas aeruginosa
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability
95
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
10.5
Sample volume/column (mL)
0.5
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry specific beads
Selected surface protein(s)
Pseudomonas aeruginosa antigen
Characterization: Particle analysis
TRPS
EV concentration
Yes
EV170023 1/5 Haemophilus influenzae Cell culture supernatant dUC
Filtration
SEC
UF
Volgers C 2017 14%

Study summary

Full title
All authors
Volgers C, Grauls GE, Hellebrand PHM, Savelkoul PHM, Stassen FRM
Journal
Scientific Reports
Abstract
Patients with more severe chronic obstructive pulmonary disease frequently experience exacerbations (show more...)Patients with more severe chronic obstructive pulmonary disease frequently experience exacerbations and it is estimated that up to 50% of these exacerbations are associated with bacterial infections. The mainstay treatment for these infection-related exacerbations constitutes the administration of glucocorticoids, alone or in combination with antibiotics. A recent line of evidence demonstrates that many hormones including the steroid beclomethasone can also directly affect bacterial growth, virulence, and antibiotic resistance. The effect of these regimens on the release of potentially virulent and toxic membrane vesicles (MVs) is at present unclear. In this study, we determined the effect of several pharmacological agents on MVs release by and bacterial growth of common respiratory pathogens. We found that neither the release of MVs nor the bacterial growth was affected by the glucocorticoids budesonide and fluticasone. The macrolide antibiotic azithromycin only inhibited the growth of Moraxella catarrhalis but no effects were observed on bacterial MV release at a concentration that is achieved locally in the epithelial lining on administration. The macrophage pro-inflammatory response to MVs was significantly reduced after treatment with budesonide and fluticasone but not by azithromycin treatment. Our findings suggest that these glucocorticoids may have a positive effect on infection-related inflammation although the bacterial growth and MV release remained unaffected. (hide)
EV-METRIC
14% (42nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
membrane vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration + SEC + UF
Protein markers
EV: non-typeable Haemophilus influenzae antigen
non-EV: None
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting
Sample
Species
Haemophilus influenzae
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
non-typeable Haemophilus influenzae
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
10.5
Sample volume/column (mL)
0.5
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry specific beads
Selected surface protein(s)
non-typeable Haemophilus influenzae antigen
Characterization: Particle analysis
TRPS
EV concentration
Yes
EV170023 2/5 Homo sapiens Cell culture supernatant dUC
Filtration
SEC
UF
Volgers C 2017 14%

Study summary

Full title
All authors
Volgers C, Grauls GE, Hellebrand PHM, Savelkoul PHM, Stassen FRM
Journal
Scientific Reports
Abstract
Patients with more severe chronic obstructive pulmonary disease frequently experience exacerbations (show more...)Patients with more severe chronic obstructive pulmonary disease frequently experience exacerbations and it is estimated that up to 50% of these exacerbations are associated with bacterial infections. The mainstay treatment for these infection-related exacerbations constitutes the administration of glucocorticoids, alone or in combination with antibiotics. A recent line of evidence demonstrates that many hormones including the steroid beclomethasone can also directly affect bacterial growth, virulence, and antibiotic resistance. The effect of these regimens on the release of potentially virulent and toxic membrane vesicles (MVs) is at present unclear. In this study, we determined the effect of several pharmacological agents on MVs release by and bacterial growth of common respiratory pathogens. We found that neither the release of MVs nor the bacterial growth was affected by the glucocorticoids budesonide and fluticasone. The macrolide antibiotic azithromycin only inhibited the growth of Moraxella catarrhalis but no effects were observed on bacterial MV release at a concentration that is achieved locally in the epithelial lining on administration. The macrophage pro-inflammatory response to MVs was significantly reduced after treatment with budesonide and fluticasone but not by azithromycin treatment. Our findings suggest that these glucocorticoids may have a positive effect on infection-related inflammation although the bacterial growth and MV release remained unaffected. (hide)
EV-METRIC
14% (42nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
membrane vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration + SEC + UF
Protein markers
EV: CD63/ CD81
non-EV: None
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
THP1
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
10.5
Sample volume/column (mL)
0.5
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry specific beads
Selected surface protein(s)
CD63
Characterization: Particle analysis
TRPS
EV concentration
Yes
EV170023 3/5 Streptococcus pneumoniae Cell culture supernatant dUC
Filtration
SEC
UF
Volgers C 2017 14%

Study summary

Full title
All authors
Volgers C, Grauls GE, Hellebrand PHM, Savelkoul PHM, Stassen FRM
Journal
Scientific Reports
Abstract
Patients with more severe chronic obstructive pulmonary disease frequently experience exacerbations (show more...)Patients with more severe chronic obstructive pulmonary disease frequently experience exacerbations and it is estimated that up to 50% of these exacerbations are associated with bacterial infections. The mainstay treatment for these infection-related exacerbations constitutes the administration of glucocorticoids, alone or in combination with antibiotics. A recent line of evidence demonstrates that many hormones including the steroid beclomethasone can also directly affect bacterial growth, virulence, and antibiotic resistance. The effect of these regimens on the release of potentially virulent and toxic membrane vesicles (MVs) is at present unclear. In this study, we determined the effect of several pharmacological agents on MVs release by and bacterial growth of common respiratory pathogens. We found that neither the release of MVs nor the bacterial growth was affected by the glucocorticoids budesonide and fluticasone. The macrolide antibiotic azithromycin only inhibited the growth of Moraxella catarrhalis but no effects were observed on bacterial MV release at a concentration that is achieved locally in the epithelial lining on administration. The macrophage pro-inflammatory response to MVs was significantly reduced after treatment with budesonide and fluticasone but not by azithromycin treatment. Our findings suggest that these glucocorticoids may have a positive effect on infection-related inflammation although the bacterial growth and MV release remained unaffected. (hide)
EV-METRIC
14% (42nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
membrane vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration + SEC + UF
Protein markers
EV: Streptococcus pneumoniae antigen
non-EV: None
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting
Sample
Species
Streptococcus pneumoniae
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
Streptococcus pneumoniae
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
10.5
Sample volume/column (mL)
0.5
Resin type
Sepharose CL-2B