Search > Results

You searched for: EV200178 (EV-TRACK ID)

Showing 1 - 4 of 4

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Details EV-TRACK ID Experiment nr. Species Sample type separation protocol First author Year EV-METRIC
EV200178 2/4 Homo sapiens Blood plasma (Differential) (ultra)centrifugation
Density cushion
Filtration
Pillay, Preenan 2016 44%

Study summary

Full title
All authors
Preenan Pillay, Niren Maharaj, Jagidesa Moodley, Irene Mackraj
Journal
Placenta
Abstract
Introduction and aim: Exosomes are a subtype of extracellular vesicle (20-130 nm) released by biolog (show more...)Introduction and aim: Exosomes are a subtype of extracellular vesicle (20-130 nm) released by biological cells under normal and pathological conditions. Although there have been reports of circulating exosomes in normal pregnancy, the relevance of placental-derived exosomes in normal and abnormal pregnancies still needs to be elucidated. The aim of this study was to quantify total and placental-derived exosomes in maternal plasma from normal (N), early onset- and late onset-preeclampsia (PE). Method: Plasma samples were obtained from pregnant women in the third trimester, for the isolation of exosomes by differential ultracentrifugation. Total exosomes were quantified using nanoparticle tracking analysis and immuno-reactive exosomal CD63 quantification. Placental-derived exosomes were quantified using placental alkaline phosphatase (PLAP) as a specific marker. The contribution of placental-derived exosomes to total exosomes in maternal plasma was determined by the ratio of PLAP+ exosomes to CD63+ exosomes. Results: The concentration of total exosomes significantly increased in early onset-PE and late onset-PE compared to N (≤33 weeks) and N (≥34 weeks). The relative concentration of placental-derived exosomes significantly increased in early onset-PE but decreased in late onset-PE compared to N. The ratio of PLAP+ exosomes to total number of exosomes significantly decreased in early onset-PE and late onset-PE. A positive correlation between total and placental-derived exosomes were obtained in N (≤33 weeks: Pearson's r = 0.60, ≥34 weeks: Pearson's r = 0.67) and early onset-PE (Pearson's r = 0.51, p < 0.05) with the inverse in late onset-PE (Pearson's r = -0.62, p < 0.01). Conclusion: The differences in the contribution of placental-derived exosomes to total exosomes in maternal circulation suggests a possible pathophysiological role of placental-derived exosomes in pre-eclampsia. (hide)
EV-METRIC
44% (77th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Normal pregnancy (>34 weeks gestation)
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(Differential) (ultra)centrifugation + Density cushion + Filtration
Protein markers
EV: PLAP/ CD63
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
Normal pregnancy (>34 weeks gestation)
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Pelleting: rotor type
MLA-55
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
70
Wash: Rotor Type
MLA-55
Wash: speed (g)
110000
Filtration steps
0.22µm or 0.2µm
Density cushion
Density medium
Sucrose
Characterization: Protein analysis
Protein Concentration Method
Lowry
Western Blot
Detected EV-associated proteins
CD63
ELISA
Detected EV-associated proteins
CD63/ PLAP
Flow cytometry
Hardware adjustments
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
100.3 + - 7.78 nm
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV200178 1/4 Homo sapiens Blood plasma (Differential) (ultra)centrifugation
Density cushion
Filtration
Pillay, Preenan 2016 33%

Study summary

Full title
All authors
Preenan Pillay, Niren Maharaj, Jagidesa Moodley, Irene Mackraj
Journal
Placenta
Abstract
Introduction and aim: Exosomes are a subtype of extracellular vesicle (20-130 nm) released by biolog (show more...)Introduction and aim: Exosomes are a subtype of extracellular vesicle (20-130 nm) released by biological cells under normal and pathological conditions. Although there have been reports of circulating exosomes in normal pregnancy, the relevance of placental-derived exosomes in normal and abnormal pregnancies still needs to be elucidated. The aim of this study was to quantify total and placental-derived exosomes in maternal plasma from normal (N), early onset- and late onset-preeclampsia (PE). Method: Plasma samples were obtained from pregnant women in the third trimester, for the isolation of exosomes by differential ultracentrifugation. Total exosomes were quantified using nanoparticle tracking analysis and immuno-reactive exosomal CD63 quantification. Placental-derived exosomes were quantified using placental alkaline phosphatase (PLAP) as a specific marker. The contribution of placental-derived exosomes to total exosomes in maternal plasma was determined by the ratio of PLAP+ exosomes to CD63+ exosomes. Results: The concentration of total exosomes significantly increased in early onset-PE and late onset-PE compared to N (≤33 weeks) and N (≥34 weeks). The relative concentration of placental-derived exosomes significantly increased in early onset-PE but decreased in late onset-PE compared to N. The ratio of PLAP+ exosomes to total number of exosomes significantly decreased in early onset-PE and late onset-PE. A positive correlation between total and placental-derived exosomes were obtained in N (≤33 weeks: Pearson's r = 0.60, ≥34 weeks: Pearson's r = 0.67) and early onset-PE (Pearson's r = 0.51, p < 0.05) with the inverse in late onset-PE (Pearson's r = -0.62, p < 0.01). Conclusion: The differences in the contribution of placental-derived exosomes to total exosomes in maternal circulation suggests a possible pathophysiological role of placental-derived exosomes in pre-eclampsia. (hide)
EV-METRIC
33% (63rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Normal pregnancy (< 33 weeks gestation)
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(Differential) (ultra)centrifugation + Density cushion + Filtration
Protein markers
EV: PLAP/ CD63
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
Normal pregnancy (< 33 weeks gestation)
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Pelleting: rotor type
MLA-55
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
70
Wash: Rotor Type
MLA-55
Wash: speed (g)
110000
Filtration steps
0.22µm or 0.2µm
Density cushion
Density medium
Sucrose
Characterization: Protein analysis
Protein Concentration Method
Lowry
Western Blot
Detected EV-associated proteins
CD63
ELISA
Detected EV-associated proteins
CD63/ PLAP
Flow cytometry
Hardware adjustments
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
102.9 + - 12.16
EV concentration
Yes
EV200178 3/4 Homo sapiens Blood plasma (Differential) (ultra)centrifugation
Density cushion
Filtration
Pillay, Preenan 2016 33%

Study summary

Full title
All authors
Preenan Pillay, Niren Maharaj, Jagidesa Moodley, Irene Mackraj
Journal
Placenta
Abstract
Introduction and aim: Exosomes are a subtype of extracellular vesicle (20-130 nm) released by biolog (show more...)Introduction and aim: Exosomes are a subtype of extracellular vesicle (20-130 nm) released by biological cells under normal and pathological conditions. Although there have been reports of circulating exosomes in normal pregnancy, the relevance of placental-derived exosomes in normal and abnormal pregnancies still needs to be elucidated. The aim of this study was to quantify total and placental-derived exosomes in maternal plasma from normal (N), early onset- and late onset-preeclampsia (PE). Method: Plasma samples were obtained from pregnant women in the third trimester, for the isolation of exosomes by differential ultracentrifugation. Total exosomes were quantified using nanoparticle tracking analysis and immuno-reactive exosomal CD63 quantification. Placental-derived exosomes were quantified using placental alkaline phosphatase (PLAP) as a specific marker. The contribution of placental-derived exosomes to total exosomes in maternal plasma was determined by the ratio of PLAP+ exosomes to CD63+ exosomes. Results: The concentration of total exosomes significantly increased in early onset-PE and late onset-PE compared to N (≤33 weeks) and N (≥34 weeks). The relative concentration of placental-derived exosomes significantly increased in early onset-PE but decreased in late onset-PE compared to N. The ratio of PLAP+ exosomes to total number of exosomes significantly decreased in early onset-PE and late onset-PE. A positive correlation between total and placental-derived exosomes were obtained in N (≤33 weeks: Pearson's r = 0.60, ≥34 weeks: Pearson's r = 0.67) and early onset-PE (Pearson's r = 0.51, p < 0.05) with the inverse in late onset-PE (Pearson's r = -0.62, p < 0.01). Conclusion: The differences in the contribution of placental-derived exosomes to total exosomes in maternal circulation suggests a possible pathophysiological role of placental-derived exosomes in pre-eclampsia. (hide)
EV-METRIC
33% (63rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Early-onset pre-eclampsia (< 33 weeks gestation)
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(Differential) (ultra)centrifugation + Density cushion + Filtration
Protein markers
EV: PLAP/ CD63
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
Early-onset pre-eclampsia (< 33 weeks gestation)
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Pelleting: rotor type
MLA-55
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
70
Wash: Rotor Type
MLA-55
Wash: speed (g)
110000
Filtration steps
0.22µm or 0.2µm
Density cushion
Density medium
Sucrose
Characterization: Protein analysis
Protein Concentration Method
Lowry
Western Blot
Detected EV-associated proteins
CD63
ELISA
Detected EV-associated proteins
CD63/ PLAP
Flow cytometry
Hardware adjustments
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
101.8 + - 7.68 nm
EV concentration
Yes
EV200178 4/4 Homo sapiens Blood plasma (Differential) (ultra)centrifugation
Density cushion
Filtration
Pillay, Preenan 2016 33%

Study summary

Full title
All authors
Preenan Pillay, Niren Maharaj, Jagidesa Moodley, Irene Mackraj
Journal
Placenta
Abstract
Introduction and aim: Exosomes are a subtype of extracellular vesicle (20-130 nm) released by biolog (show more...)Introduction and aim: Exosomes are a subtype of extracellular vesicle (20-130 nm) released by biological cells under normal and pathological conditions. Although there have been reports of circulating exosomes in normal pregnancy, the relevance of placental-derived exosomes in normal and abnormal pregnancies still needs to be elucidated. The aim of this study was to quantify total and placental-derived exosomes in maternal plasma from normal (N), early onset- and late onset-preeclampsia (PE). Method: Plasma samples were obtained from pregnant women in the third trimester, for the isolation of exosomes by differential ultracentrifugation. Total exosomes were quantified using nanoparticle tracking analysis and immuno-reactive exosomal CD63 quantification. Placental-derived exosomes were quantified using placental alkaline phosphatase (PLAP) as a specific marker. The contribution of placental-derived exosomes to total exosomes in maternal plasma was determined by the ratio of PLAP+ exosomes to CD63+ exosomes. Results: The concentration of total exosomes significantly increased in early onset-PE and late onset-PE compared to N (≤33 weeks) and N (≥34 weeks). The relative concentration of placental-derived exosomes significantly increased in early onset-PE but decreased in late onset-PE compared to N. The ratio of PLAP+ exosomes to total number of exosomes significantly decreased in early onset-PE and late onset-PE. A positive correlation between total and placental-derived exosomes were obtained in N (≤33 weeks: Pearson's r = 0.60, ≥34 weeks: Pearson's r = 0.67) and early onset-PE (Pearson's r = 0.51, p < 0.05) with the inverse in late onset-PE (Pearson's r = -0.62, p < 0.01). Conclusion: The differences in the contribution of placental-derived exosomes to total exosomes in maternal circulation suggests a possible pathophysiological role of placental-derived exosomes in pre-eclampsia. (hide)
EV-METRIC
33% (63rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Late-onset pre-eclampsia (> 34 weeks gestation)
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(Differential) (ultra)centrifugation + Density cushion + Filtration
Protein markers
EV: PLAP/ CD63
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
Late-onset pre-eclampsia (> 34 weeks gestation)
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Pelleting: rotor type
MLA-55
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
70
Wash: Rotor Type
MLA-55
Wash: speed (g)
110000
Filtration steps
0.22µm or 0.2µm
Density cushion
Density medium
Sucrose
Characterization: Protein analysis
Protein Concentration Method
Lowry
Western Blot
Detected EV-associated proteins
CD63
ELISA
Detected EV-associated proteins
CD63/ PLAP
Flow cytometry
Hardware adjustments
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
104.1 + - 7.65 nm
EV concentration
Yes
1 - 4 of 4