Search > Results

You searched for: EV200123 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV200123 2/2 Homo sapiens Serum (d)(U)C
Total exosome isolation
Jorge Gutierrez-Franco 2018 12%

Study summary

Full title
All authors
Jorge Gutierrez-Franco, Rodolfo Hernandez-Gutierrez, Miriam Ruth Bueno-Topete, Jesse Haramati, Rosa Elena Navarro-Hernandez, Marta Escarra-Senmarti, Natali Vega-Magaña, Alicia del Toro-Arreola, Ana Laura Pereira-Suarez, Susana del Toro-Arreola
Journal
Immunobiology
Abstract
B7H6, an endogenous ligand expressed on tumor cell surfaces, triggers NKp30-mediated activation of h (show more...)B7H6, an endogenous ligand expressed on tumor cell surfaces, triggers NKp30-mediated activation of human NK cells. In contrast, the release of soluble B7H6 has been proposed as a novel mechanism by which tumors might evade NK cell-mediated recognition. Since NK cells are critical for the maintenance of early pregnancy, it is not illogical that soluble B7H6 might also be an important factor in directing NK cell activity during normal pregnancy. Thus, this study was focused on the characterization of soluble B7H6 during the development of normal pregnancy. Serum samples were obtained from healthy pregnant women who were experiencing their second pregnancies (n =36). Additionally, 17 of these pregnant participants were longitudinally studied for the presence of B7H6 during their second and third trimesters. Age-matched healthy non-pregnant women served as controls (n =30). The presence of soluble B7H6 was revealed by Western blotting. A further characterization was performed using an immunoproteomic approach based on 2DE-Western blotting combined with MALDI-MS. The results show that sera from all pregnant women were characterized by the presence of two novel isoforms of B7H6, both with lower MW than the reported of 51 kDa. These isoforms were either a heavy (∼37 kDa) or a light isoform (∼30 kDa) and were mutually exclusive. N-glycosylation did not completely explain the different molecular weights exhibited by the two isoforms, as was demonstrated by enzymatic deglycosylation with PNGase F. The confirmation of the identity and molecular mass of each isoform indicates that B7H6, while maintaining the C- and N-termini, is most likely released during pregnancy by a mechanism distinct from proteolytic cleavage. We found that both isoforms, but mainly the heavier B7H6, were released via exosomes; and that the lighter isoform was also released in an exosome-free manner that was not observed in the heavy isoform samples. In conclusion, we find that soluble B7H6 is constitutively expressed during pregnancy and that, moreover, the soluble B7H6 is present in two new isoforms, which are released by exosomal and exosome-free mechanisms. (hide)
EV-METRIC
12% (43rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Healthy pregnant
Focus vesicles
Exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Commercial method
Protein markers
EV: CD63/ B7H6
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Commercial kit
Total exosome isolation
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63/ B7H6
EV200123 1/2 Homo sapiens Serum (d)(U)C
Total exosome isolation
Jorge Gutierrez-Franco 2018 0%

Study summary

Full title
All authors
Jorge Gutierrez-Franco, Rodolfo Hernandez-Gutierrez, Miriam Ruth Bueno-Topete, Jesse Haramati, Rosa Elena Navarro-Hernandez, Marta Escarra-Senmarti, Natali Vega-Magaña, Alicia del Toro-Arreola, Ana Laura Pereira-Suarez, Susana del Toro-Arreola
Journal
Immunobiology
Abstract
B7H6, an endogenous ligand expressed on tumor cell surfaces, triggers NKp30-mediated activation of h (show more...)B7H6, an endogenous ligand expressed on tumor cell surfaces, triggers NKp30-mediated activation of human NK cells. In contrast, the release of soluble B7H6 has been proposed as a novel mechanism by which tumors might evade NK cell-mediated recognition. Since NK cells are critical for the maintenance of early pregnancy, it is not illogical that soluble B7H6 might also be an important factor in directing NK cell activity during normal pregnancy. Thus, this study was focused on the characterization of soluble B7H6 during the development of normal pregnancy. Serum samples were obtained from healthy pregnant women who were experiencing their second pregnancies (n =36). Additionally, 17 of these pregnant participants were longitudinally studied for the presence of B7H6 during their second and third trimesters. Age-matched healthy non-pregnant women served as controls (n =30). The presence of soluble B7H6 was revealed by Western blotting. A further characterization was performed using an immunoproteomic approach based on 2DE-Western blotting combined with MALDI-MS. The results show that sera from all pregnant women were characterized by the presence of two novel isoforms of B7H6, both with lower MW than the reported of 51 kDa. These isoforms were either a heavy (∼37 kDa) or a light isoform (∼30 kDa) and were mutually exclusive. N-glycosylation did not completely explain the different molecular weights exhibited by the two isoforms, as was demonstrated by enzymatic deglycosylation with PNGase F. The confirmation of the identity and molecular mass of each isoform indicates that B7H6, while maintaining the C- and N-termini, is most likely released during pregnancy by a mechanism distinct from proteolytic cleavage. We found that both isoforms, but mainly the heavier B7H6, were released via exosomes; and that the lighter isoform was also released in an exosome-free manner that was not observed in the heavy isoform samples. In conclusion, we find that soluble B7H6 is constitutively expressed during pregnancy and that, moreover, the soluble B7H6 is present in two new isoforms, which are released by exosomal and exosome-free mechanisms. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
Exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Commercial method
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Commercial kit
Total exosome isolation
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV200123
species
Homo sapiens
sample type
Serum
condition
Healthy pregnant
Control condition
separation protocol
dUC
Total exosome isolation
dUC
Total exosome isolation
Exp. nr.
2
1
EV-METRIC %
12
0