Search > Results

You searched for: EV200047 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV200047 2/2 Homo sapiens MCF7 UF
DG
Yildizhan, Yagmur 2021 67%

Study summary

Full title
All authors
Yagmur Yildizhan, Venkata Suresh Vajrala, Edward Geeurickx, Charles Declerck, Nevena Duskunovic, Delphine De Sutter, Sam Noppen, Filip Delport, Dominique Schols, Johannes V. Swinnen, Sven Eyckerman, An Hendrix, Jeroen Lammertyn, Dragana Spasic
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have drawn huge attention for diagnosing myriad of diseases, including (show more...)Extracellular vesicles (EVs) have drawn huge attention for diagnosing myriad of diseases, including cancer. However, the EV detection and analyses procedures often lack much desired sample standardization. To address this, we used well‐characterized recombinant EVs (rEVs) for the first time as a biological reference material in developing a fiber optic surface plasmon resonance (FO‐SPR) bioassay. In this context, EV binding on the FO‐SPR probes was achieved only with EV‐specific antibodies (e.g. anti‐CD9 and anti‐CD63) but not with non‐specific anti‐IgG. To increase detection sensitivity, we tested six different combinations of EV‐specific antibodies in a sandwich bioassay. Calibration curves were generated with two most effective combinations (anti‐CD9/Banti‐CD81 and anti‐CD63/Banti‐CD9), resulting in 103 and 104 times higher sensitivity than the EV concentration in human blood plasma from healthy or cancer patients, respectively. Additionally, by using anti‐CD63/Banti‐CD9, we detected rEVs spiked in cell culture medium and HEK293 endogenous EVs in the same matrix without any prior EV purification or enrichment. Lastly, we selectively captured breast cancer cell EVs spiked in blood plasma using anti‐EpCAM antibody on the FO‐SPR surface. The obtained results combined with FO‐SPR real‐time monitoring, fast response time and ease of operation, demonstrate its outstanding potential for EV quantification and analysis. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Rab27B-GFP
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Ultrafiltration
Density gradient
Protein markers
EV: None
non-EV: None
Proteomics
no
EV density (g/ml)
1.086-1.119
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MCF7
EV-harvesting Medium
Serum free medium
Separation Method
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
11
Lowest density fraction
6
Highest density fraction
18
Total gradient volume, incl. sample (mL)
15
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 32.1 Ti
Speed (g)
186700
Duration (min)
116
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
16
Pelleting: duration (min)
180
Pelleting: rotor type
SW 32.1 Ti
Pelleting: speed (g)
100000
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Characterization: Protein analysis
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV200047 1/2 Homo sapiens HEK293T UF
DG
Yildizhan, Yagmur 2021 57%

Study summary

Full title
All authors
Yagmur Yildizhan, Venkata Suresh Vajrala, Edward Geeurickx, Charles Declerck, Nevena Duskunovic, Delphine De Sutter, Sam Noppen, Filip Delport, Dominique Schols, Johannes V. Swinnen, Sven Eyckerman, An Hendrix, Jeroen Lammertyn, Dragana Spasic
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have drawn huge attention for diagnosing myriad of diseases, including (show more...)Extracellular vesicles (EVs) have drawn huge attention for diagnosing myriad of diseases, including cancer. However, the EV detection and analyses procedures often lack much desired sample standardization. To address this, we used well‐characterized recombinant EVs (rEVs) for the first time as a biological reference material in developing a fiber optic surface plasmon resonance (FO‐SPR) bioassay. In this context, EV binding on the FO‐SPR probes was achieved only with EV‐specific antibodies (e.g. anti‐CD9 and anti‐CD63) but not with non‐specific anti‐IgG. To increase detection sensitivity, we tested six different combinations of EV‐specific antibodies in a sandwich bioassay. Calibration curves were generated with two most effective combinations (anti‐CD9/Banti‐CD81 and anti‐CD63/Banti‐CD9), resulting in 103 and 104 times higher sensitivity than the EV concentration in human blood plasma from healthy or cancer patients, respectively. Additionally, by using anti‐CD63/Banti‐CD9, we detected rEVs spiked in cell culture medium and HEK293 endogenous EVs in the same matrix without any prior EV purification or enrichment. Lastly, we selectively captured breast cancer cell EVs spiked in blood plasma using anti‐EpCAM antibody on the FO‐SPR surface. The obtained results combined with FO‐SPR real‐time monitoring, fast response time and ease of operation, demonstrate its outstanding potential for EV quantification and analysis. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
transfected with gag-EGFP
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Ultrafiltration
Density gradient
Protein markers
EV: None
non-EV: None
Proteomics
no
EV density (g/ml)
1.086-1.119
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293T
EV-harvesting Medium
Serum free medium
Separation Method
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 32.1 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
16
Pelleting: duration (min)
180
Pelleting: rotor type
SW 32.1 Ti
Pelleting: speed (g)
100000
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
108.6
EV concentration
Yes
Particle yield
No NA
Particle analysis: flow cytometry
Flow cytometer type
High resolution flow cytometry
Hardware adjustment
200 mW 488 nm laser (Sapphire; Coherent, Santa Clara, CA, USA) and a large-bore nozzle (140 m) were used, sheath pressure was permanently monitored and kept within 4.89 to 5.02 psi, and the sample pressure was set at 4.29 psi, to assure an identical diameter of the core in the jet stream. Forward scattered light was measured with a collection angle of 1525 (reduced wide-angle forward scatter [rw-FSC]).
Calibration bead size
0.102
EV concentration
Yes
EM
EM-type
Immuno-EM/ Transmission-EM
EM protein
CD63
Image type
Close-up, Wide-field
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV200047
species
Homo sapiens
sample type
Cell culture
cell type
MCF7
HEK293T
condition
Rab27B-GFP
transfected
with gag-EGFP
separation protocol
Ultrafiltration
Density gradient
Ultrafiltration
Density gradient
Exp. nr.
2
1
EV-METRIC %
67
57