Search > Results

You searched for: EV190051 (EV-TRACK ID)

Showing 1 - 4 of 4

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Experiment number
  • Experiments differ in Sample type, Sample origin
Experiment number
  • Experiments differ in Sample type, Sample origin
Experiment number
  • Experiments differ in Sample type, Sample origin
Experiment number
  • Experiments differ in Sample type, Sample origin
Details EV-TRACK ID Experiment nr. Species Sample type separation protocol First author Year EV-METRIC
EV190051 2/4 Homo sapiens Serum dUC
qEV
miRCURY
Stefanie Hermann 2019 75%

Study summary

Full title
All authors
Stefanie Hermann, Dominik Buschmann, Benedikt Kirchner, Melanie Borrmann, Florian Brandes, Stefan Kotschote, Michael Bonin, Anja Lindemann, Marlene Reithmair, Gustav Schelling, Michael W. Pfaffl
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) play central physiological and pathophysiological roles in intercellula (show more...)Extracellular vesicles (EVs) play central physiological and pathophysiological roles in intercellular communication. Biomarker studies addressing disorders such as cardiovascular diseases often focus on circulating microRNAs (miRNAs) and may, depending on the type of disease and clinic routine, utilise patient specimens sampled from arterial or venous blood vessels. Thus, it is essential to test whether circulating miRNA profiles depend on the respective sampling site. We assessed potential differences in arterial and venous cell-free miRNA profiles in a cohort of 20 patients scheduled for cardiac surgery. Prior to surgery, blood was simultaneously sampled from the radial artery and the internal jugular vein. After precipitating crude EVs, we performed small RNA Sequencing, which failed to detect significantly regulated miRNAs using stringent filtering criteria for differential expression analysis. Filtering with less strict criteria, we detected four miRNAs slightly upregulated in arterial samples, one of which could be validated by reverse transcription real-time PCR. The applicability of these findings to purified arterial and venous EVs was subsequently tested in a subset of the initial study population. While an additional clean-up step using size-exclusion chromatography seemed to reduce overall miRNA yield compared to crude EV samples, no miRNAs with differential arteriovenous expression were detected. Unsupervised clustering approaches were unable to correctly classify samples drawn from arteries or veins based on miRNAs in either crude or purified preparations. Particle characterisation of crude preparations as well as characterisation of EV markers in purified EVs resulted in highly similar characteristics for arterial and venous samples. With the exception of specific pathologies (e.g. severe pulmonary disorders), arterial versus venous blood sampling should therefore not represent a likely confounder when studying differentially expressed circulating miRNAs. The use of either arterial or venous serum EV samples should result in highly similar data on miRNA expression profiles for the majority of biomarker studies. (hide)
EV-METRIC
75% (98th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
arterial blood, cardiac surgery
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + qEV + miRCURY
Protein markers
EV: Alix/ CD81/ CD63/ Syntenin
non-EV: Calnexin/ Albumin/ ApoA1
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
arterial blood, cardiac surgery
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Equal to or above 150,000 g
Pelleting: time(min)
120
Pelleting: rotor type
SW60 Ti
Pelleting: speed (g)
200000
Commercial kit
qEV;miRCURY
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ CD63/ Syntenin/ CD81
Detected contaminants
ApoA1/ Albumin
Not detected contaminants
Calnexin
Characterization: Particle analysis
NA
NTA
Report type
Mean
Reported size (nm)
138.54 ± 10.18
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV190051 4/4 Homo sapiens Serum dUC
qEV
miRCURY
Stefanie Hermann 2019 75%

Study summary

Full title
All authors
Stefanie Hermann, Dominik Buschmann, Benedikt Kirchner, Melanie Borrmann, Florian Brandes, Stefan Kotschote, Michael Bonin, Anja Lindemann, Marlene Reithmair, Gustav Schelling, Michael W. Pfaffl
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) play central physiological and pathophysiological roles in intercellula (show more...)Extracellular vesicles (EVs) play central physiological and pathophysiological roles in intercellular communication. Biomarker studies addressing disorders such as cardiovascular diseases often focus on circulating microRNAs (miRNAs) and may, depending on the type of disease and clinic routine, utilise patient specimens sampled from arterial or venous blood vessels. Thus, it is essential to test whether circulating miRNA profiles depend on the respective sampling site. We assessed potential differences in arterial and venous cell-free miRNA profiles in a cohort of 20 patients scheduled for cardiac surgery. Prior to surgery, blood was simultaneously sampled from the radial artery and the internal jugular vein. After precipitating crude EVs, we performed small RNA Sequencing, which failed to detect significantly regulated miRNAs using stringent filtering criteria for differential expression analysis. Filtering with less strict criteria, we detected four miRNAs slightly upregulated in arterial samples, one of which could be validated by reverse transcription real-time PCR. The applicability of these findings to purified arterial and venous EVs was subsequently tested in a subset of the initial study population. While an additional clean-up step using size-exclusion chromatography seemed to reduce overall miRNA yield compared to crude EV samples, no miRNAs with differential arteriovenous expression were detected. Unsupervised clustering approaches were unable to correctly classify samples drawn from arteries or veins based on miRNAs in either crude or purified preparations. Particle characterisation of crude preparations as well as characterisation of EV markers in purified EVs resulted in highly similar characteristics for arterial and venous samples. With the exception of specific pathologies (e.g. severe pulmonary disorders), arterial versus venous blood sampling should therefore not represent a likely confounder when studying differentially expressed circulating miRNAs. The use of either arterial or venous serum EV samples should result in highly similar data on miRNA expression profiles for the majority of biomarker studies. (hide)
EV-METRIC
75% (98th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
venous blood, cardiac surgery
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + qEV + miRCURY
Protein markers
EV: Alix/ CD81/ CD63/ Syntenin
non-EV: Calnexin/ Albumin/ ApoA1
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
venous blood, cardiac surgery
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Equal to or above 150,000 g
Pelleting: time(min)
120
Pelleting: rotor type
SW60 Ti
Pelleting: speed (g)
200000
Commercial kit
qEV;miRCURY
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ Syntenin/ CD63/ CD81
Detected contaminants
ApoA1/ Albumin
Not detected contaminants
Calnexin
Characterization: Particle analysis
NA
NTA
Report type
Mean
Reported size (nm)
147.54 ± 6.84
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV190051 1/4 Homo sapiens Serum miRCURY Stefanie Hermann 2019 33%

Study summary

Full title
All authors
Stefanie Hermann, Dominik Buschmann, Benedikt Kirchner, Melanie Borrmann, Florian Brandes, Stefan Kotschote, Michael Bonin, Anja Lindemann, Marlene Reithmair, Gustav Schelling, Michael W. Pfaffl
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) play central physiological and pathophysiological roles in intercellula (show more...)Extracellular vesicles (EVs) play central physiological and pathophysiological roles in intercellular communication. Biomarker studies addressing disorders such as cardiovascular diseases often focus on circulating microRNAs (miRNAs) and may, depending on the type of disease and clinic routine, utilise patient specimens sampled from arterial or venous blood vessels. Thus, it is essential to test whether circulating miRNA profiles depend on the respective sampling site. We assessed potential differences in arterial and venous cell-free miRNA profiles in a cohort of 20 patients scheduled for cardiac surgery. Prior to surgery, blood was simultaneously sampled from the radial artery and the internal jugular vein. After precipitating crude EVs, we performed small RNA Sequencing, which failed to detect significantly regulated miRNAs using stringent filtering criteria for differential expression analysis. Filtering with less strict criteria, we detected four miRNAs slightly upregulated in arterial samples, one of which could be validated by reverse transcription real-time PCR. The applicability of these findings to purified arterial and venous EVs was subsequently tested in a subset of the initial study population. While an additional clean-up step using size-exclusion chromatography seemed to reduce overall miRNA yield compared to crude EV samples, no miRNAs with differential arteriovenous expression were detected. Unsupervised clustering approaches were unable to correctly classify samples drawn from arteries or veins based on miRNAs in either crude or purified preparations. Particle characterisation of crude preparations as well as characterisation of EV markers in purified EVs resulted in highly similar characteristics for arterial and venous samples. With the exception of specific pathologies (e.g. severe pulmonary disorders), arterial versus venous blood sampling should therefore not represent a likely confounder when studying differentially expressed circulating miRNAs. The use of either arterial or venous serum EV samples should result in highly similar data on miRNA expression profiles for the majority of biomarker studies. (hide)
EV-METRIC
33% (81st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
arterial blood, cardiac surgery
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
miRCURY
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
arterial blood, cardiac surgery
Separation Method
Commercial kit
miRCURY
Characterization: Particle analysis
NA
NTA
Report type
Mean
Reported size (nm)
113.2 ± 8.30
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV190051 3/4 Homo sapiens Serum miRCURY Stefanie Hermann 2019 33%

Study summary

Full title
All authors
Stefanie Hermann, Dominik Buschmann, Benedikt Kirchner, Melanie Borrmann, Florian Brandes, Stefan Kotschote, Michael Bonin, Anja Lindemann, Marlene Reithmair, Gustav Schelling, Michael W. Pfaffl
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) play central physiological and pathophysiological roles in intercellula (show more...)Extracellular vesicles (EVs) play central physiological and pathophysiological roles in intercellular communication. Biomarker studies addressing disorders such as cardiovascular diseases often focus on circulating microRNAs (miRNAs) and may, depending on the type of disease and clinic routine, utilise patient specimens sampled from arterial or venous blood vessels. Thus, it is essential to test whether circulating miRNA profiles depend on the respective sampling site. We assessed potential differences in arterial and venous cell-free miRNA profiles in a cohort of 20 patients scheduled for cardiac surgery. Prior to surgery, blood was simultaneously sampled from the radial artery and the internal jugular vein. After precipitating crude EVs, we performed small RNA Sequencing, which failed to detect significantly regulated miRNAs using stringent filtering criteria for differential expression analysis. Filtering with less strict criteria, we detected four miRNAs slightly upregulated in arterial samples, one of which could be validated by reverse transcription real-time PCR. The applicability of these findings to purified arterial and venous EVs was subsequently tested in a subset of the initial study population. While an additional clean-up step using size-exclusion chromatography seemed to reduce overall miRNA yield compared to crude EV samples, no miRNAs with differential arteriovenous expression were detected. Unsupervised clustering approaches were unable to correctly classify samples drawn from arteries or veins based on miRNAs in either crude or purified preparations. Particle characterisation of crude preparations as well as characterisation of EV markers in purified EVs resulted in highly similar characteristics for arterial and venous samples. With the exception of specific pathologies (e.g. severe pulmonary disorders), arterial versus venous blood sampling should therefore not represent a likely confounder when studying differentially expressed circulating miRNAs. The use of either arterial or venous serum EV samples should result in highly similar data on miRNA expression profiles for the majority of biomarker studies. (hide)
EV-METRIC
33% (81st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
venous blood, cardiac surgery
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
miRCURY
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Sample Condition
venous blood, cardiac surgery
Separation Method
Commercial kit
miRCURY
Characterization: Particle analysis
NA
NTA
Report type
Mean
Reported size (nm)
117.15 ± 6.20
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
1 - 4 of 4