Search > Results

You searched for: EV190032 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Details EV-TRACK ID Experiment nr. Species Sample type separation protocol First author Year EV-METRIC
EV190032 1/2 Schistosoma mansoni Schisostomula (larval stage) culture supernatant dUC Marije E Kuipers 2020 57%

Study summary

Full title
All authors
Marije E Kuipers, Esther N M Nolte-'t Hoen, Alwin J van der Ham, Arifa Ozir-Fazalalikhan, D Linh Nguyen, Clarize M de Korne, Roman I Koning, John J Tomes, Karl F Hoffmann, Hermelijn H Smits, Cornelis H Hokke
Journal
J Extracell Vesicles
Abstract
Helminths like Schistosoma mansoni release excretory/secretory (E/S) products that modulate host imm (show more...)Helminths like Schistosoma mansoni release excretory/secretory (E/S) products that modulate host immunity to enable infection. Extracellular vesicles (EVs) are among these E/S products, yet molecular mechanisms and functionality of S. mansoni EV interaction with host immune cells is unknown. Here we demonstrate that EVs released by S. mansoni schistosomula are internalised by human monocyte-derived dendritic cells (moDCs). Importantly, we show that this uptake was mainly mediated via DC-SIGN (CD209). Blocking DC-SIGN almost completely abrogated EV uptake, while blocking mannose receptor (MR, CD206) or dendritic cell immunoreceptor (DCIR, CLEC4A) had no effect on EV uptake. Mass spectrometric analysis of EV glycans revealed the presence of surface N-glycans with terminal Galβ1-4(Fucα1-3)GlcNAc (LewisX) motifs, and a wide array of fucosylated lipid-linked glycans, including LewisX, a known ligand for DC-SIGN. Stimulation of moDCs with schistosomula EVs led to increased expression of costimulatory molecules CD86 and CD80 and regulatory surface marker PD-L1. Furthermore, schistosomula EVs increased expression of IL-12 and IL-10 by moDCs, which was partly dependent on the interaction with DC-SIGN. These results provide the first evidence that glycosylation of S. mansoni EVs facilitates the interaction with host immune cells and reveals a role for DC-SIGN and EV-associated glycoconjugates in parasite-induced immune modulation. (hide)
EV-METRIC
57% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Schisostomula (larval stage) culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
213.2 (pelleting) / 213.2 (washing)
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Mechanism of uptake/transfer, Identification of content (omics approaches)
Sample
Species
Schistosoma mansoni
Sample Type
Schisostomula (larval stage) culture supernatant
Sample Condition
Control condition
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
80
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
213.2
Wash: time (min)
60
Wash: Rotor Type
SW 41 Ti
Wash: speed (g)
120000
Wash: adjusted k-factor
213.2
Characterization: Protein analysis
PMID previous EV protein analysis
26443722
Protein Concentration Method
microBCA
Protein Concentration
6
Characterization: Particle analysis
NA
NTA
Report type
Size range/distribution
Reported size (nm)
30-650
EV concentration
Yes
Particle yield
23300000000
EM
EM-type
Transmission-EM/ Cryo-EM
Image type
Close-up, Wide-field
Report size (nm)
35-190;30-715
EV190032 2/2 Schistosoma mansoni Schisostomula (larval stage) culture supernatant dUC Marije E Kuipers 2020 57%

Study summary

Full title
All authors
Marije E Kuipers, Esther N M Nolte-'t Hoen, Alwin J van der Ham, Arifa Ozir-Fazalalikhan, D Linh Nguyen, Clarize M de Korne, Roman I Koning, John J Tomes, Karl F Hoffmann, Hermelijn H Smits, Cornelis H Hokke
Journal
J Extracell Vesicles
Abstract
Helminths like Schistosoma mansoni release excretory/secretory (E/S) products that modulate host imm (show more...)Helminths like Schistosoma mansoni release excretory/secretory (E/S) products that modulate host immunity to enable infection. Extracellular vesicles (EVs) are among these E/S products, yet molecular mechanisms and functionality of S. mansoni EV interaction with host immune cells is unknown. Here we demonstrate that EVs released by S. mansoni schistosomula are internalised by human monocyte-derived dendritic cells (moDCs). Importantly, we show that this uptake was mainly mediated via DC-SIGN (CD209). Blocking DC-SIGN almost completely abrogated EV uptake, while blocking mannose receptor (MR, CD206) or dendritic cell immunoreceptor (DCIR, CLEC4A) had no effect on EV uptake. Mass spectrometric analysis of EV glycans revealed the presence of surface N-glycans with terminal Galβ1-4(Fucα1-3)GlcNAc (LewisX) motifs, and a wide array of fucosylated lipid-linked glycans, including LewisX, a known ligand for DC-SIGN. Stimulation of moDCs with schistosomula EVs led to increased expression of costimulatory molecules CD86 and CD80 and regulatory surface marker PD-L1. Furthermore, schistosomula EVs increased expression of IL-12 and IL-10 by moDCs, which was partly dependent on the interaction with DC-SIGN. These results provide the first evidence that glycosylation of S. mansoni EVs facilitates the interaction with host immune cells and reveals a role for DC-SIGN and EV-associated glycoconjugates in parasite-induced immune modulation. (hide)
EV-METRIC
57% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Schisostomula (larval stage) culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
213.2 (pelleting) / 83.21 (washing)
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Mechanism of uptake/transfer, Identification of content (omics approaches)
Sample
Species
Schistosoma mansoni
Sample Type
Schisostomula (larval stage) culture supernatant
Sample Condition
Control condition
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
65
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
213.2
Wash: time (min)
65
Wash: Rotor Type
TLS-55
Wash: speed (g)
120000
Wash: adjusted k-factor
83.21
Characterization: Protein analysis
PMID previous EV protein analysis
26443722
Protein Concentration Method
microBCA
Protein Concentration
6
Characterization: Particle analysis
NA
NTA
Report type
Size range/distribution
Reported size (nm)
30-650
EV concentration
Yes
Particle yield
23300000000
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
35-190
1 - 2 of 2