Search > Results
You searched for: EV170024 (EV-TRACK ID)
Showing 1 - 3 of 3
Showing 1 - 3 of 3
Details | EV-TRACK ID | Experiment nr. | Species | Sample type | separation protocol | First author | Year | EV-METRIC |
---|---|---|---|---|---|---|---|---|
EV170024 | 1/3 | Homo sapiens | Cell culture supernatant | (d)(U)C Filtration |
Volgers C | 2017 | 33% | |
Study summaryFull title
All authors
Volgers C, Benedikter BJ, Grauls GE, Savelkoul PHM, Stassen FRM
Journal
Aging (Albany NY)
Abstract
During infection, the release of nano-sized membrane vesicle is a process which is common both for b (show more...)
EV-METRIC
33% (61st percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
membrane vesicles
Separation protocol
Separation protocol
(d)(U)C + Filtration
Adj. k-factor
156.9 (pelleting)
Protein markers
EV: CD81/ CD63,CD81/ CD63
non-EV: None Proteomics
no
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
THP1
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Obtain an EV pellet :
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63,CD81
Flow cytometry specific beads
Selected surface protein(s)
CD63
|
||||||||
EV170024 | 2/3 | Moraxella catarrhalis | Cell culture supernatant | (d)(U)C Filtration |
Volgers C | 2017 | 33% | |
Study summaryFull title
All authors
Volgers C, Benedikter BJ, Grauls GE, Savelkoul PHM, Stassen FRM
Journal
Aging (Albany NY)
Abstract
During infection, the release of nano-sized membrane vesicle is a process which is common both for b (show more...)
EV-METRIC
33% (61st percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
membrane vesicles
Separation protocol
Separation protocol
(d)(U)C + Filtration
Adj. k-factor
156.9 (pelleting)
Protein markers
EV: Moraxella catarrhalis antigen
non-EV: None Proteomics
no
Show all info
Study aim
New methodological development
Sample
Species
Moraxella catarrhalis
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
Moraxella catarrhalis
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Obtain an EV pellet :
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Moraxella catarrhalis antigen
Flow cytometry specific beads
Selected surface protein(s)
Moraxella catarrhalis antigen
Characterization: Particle analysis
TRPS
EV concentration
Yes
Particle yield
1.50E+09 particles/ml start sample
|
||||||||
EV170024 | 3/3 | Pseudomonas aeruginosa | Cell culture supernatant | (d)(U)C Filtration |
Volgers C | 2017 | 33% | |
Study summaryFull title
All authors
Volgers C, Benedikter BJ, Grauls GE, Savelkoul PHM, Stassen FRM
Journal
Aging (Albany NY)
Abstract
During infection, the release of nano-sized membrane vesicle is a process which is common both for b (show more...)
EV-METRIC
33% (61st percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
membrane vesicles
Separation protocol
Separation protocol
(d)(U)C + Filtration
Adj. k-factor
156.9 (pelleting)
Protein markers
EV: Pseudomonas aeruginosa antigen
non-EV: None Proteomics
no
Show all info
Study aim
New methodological development
Sample
Species
Pseudomonas aeruginosa
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
Pseudomonas aeruginosa
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Obtain an EV pellet :
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Pseudomonas aeruginosa antigen
Flow cytometry specific beads
Selected surface protein(s)
Pseudomonas aeruginosa antigen
Characterization: Particle analysis
TRPS
EV concentration
Yes
Particle yield
1.00E+09 particles/ml start sample
|
||||||||
1 - 3 of 3 |