Search > Results

You searched for: EV160015 (EV-TRACK ID)

Showing 1 - 4 of 4

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Details EV-TRACK ID Experiment nr. Species Sample type separation protocol First author Year EV-METRIC
EV160015 1/4 Homo sapiens Cell culture supernatant dUC Qu L 2016 0%

Study summary

Full title
All authors
Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, Chen W, Liu F, Sun W, Li XF, Wang X, Wang Y, Xu ZY, Gao L, Yang Q, Xu B, Li YM, Fang ZY, Xu ZP, Bao Y, Wu DS, Miao X, Sun HY, Sun YH, Wang HY, Wang LH.
Journal
Cancer Res
Abstract
Sunitinib resistance is a major challenge for advanced renal cell carcinoma (RCC). Understanding the (show more...)Sunitinib resistance is a major challenge for advanced renal cell carcinoma (RCC). Understanding the underlying mechanisms and developing effective strategies against sunitinib resistance are highly desired in the clinic. Here we identified an lncRNA, named lncARSR (lncRNA Activated in RCC with Sunitinib Resistance), which correlated with clinically poor sunitinib response. lncARSR promoted sunitinib resistance via competitively binding miR-34/miR-449 to facilitate AXL and c-MET expression in RCC cells. Furthermore, bioactive lncARSR could be incorporated into exosomes and transmitted to sensitive cells, thus disseminating sunitinib resistance. Treatment of sunitinib-resistant RCC with locked nucleic acids targeting lncARSR or an AXL/c-MET inhibitor restored sunitinib response. Therefore, lncARSR may serve as a predictor and a potential therapeutic target for sunitinib resistance. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
786-O
EV-harvesting Medium
Serum-containing medium
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9/ TSG101
Characterization: RNA analysis
RNAse treatment
Moment of RNAse treatment
After
RNAse type
RNase A
RNAse concentration
Not specified
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up
EV160015 2/4 Homo sapiens Cell culture supernatant dUC Qu L 2016 0%

Study summary

Full title
All authors
Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, Chen W, Liu F, Sun W, Li XF, Wang X, Wang Y, Xu ZY, Gao L, Yang Q, Xu B, Li YM, Fang ZY, Xu ZP, Bao Y, Wu DS, Miao X, Sun HY, Sun YH, Wang HY, Wang LH.
Journal
Cancer Res
Abstract
Sunitinib resistance is a major challenge for advanced renal cell carcinoma (RCC). Understanding the (show more...)Sunitinib resistance is a major challenge for advanced renal cell carcinoma (RCC). Understanding the underlying mechanisms and developing effective strategies against sunitinib resistance are highly desired in the clinic. Here we identified an lncRNA, named lncARSR (lncRNA Activated in RCC with Sunitinib Resistance), which correlated with clinically poor sunitinib response. lncARSR promoted sunitinib resistance via competitively binding miR-34/miR-449 to facilitate AXL and c-MET expression in RCC cells. Furthermore, bioactive lncARSR could be incorporated into exosomes and transmitted to sensitive cells, thus disseminating sunitinib resistance. Treatment of sunitinib-resistant RCC with locked nucleic acids targeting lncARSR or an AXL/c-MET inhibitor restored sunitinib response. Therefore, lncARSR may serve as a predictor and a potential therapeutic target for sunitinib resistance. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
xenograft-derived sunitinib-resistant clone
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
xenograft-derived sunitinib-resistant clone
EV-producing cells
786-O
EV-harvesting Medium
Serum-containing medium
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9/ TSG101
Characterization: RNA analysis
RNAse treatment
Moment of RNAse treatment
After
RNAse type
RNase A
RNAse concentration
Not specified
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up
EV160015 3/4 Homo sapiens Cell culture supernatant dUC Qu L 2016 0%

Study summary

Full title
All authors
Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, Chen W, Liu F, Sun W, Li XF, Wang X, Wang Y, Xu ZY, Gao L, Yang Q, Xu B, Li YM, Fang ZY, Xu ZP, Bao Y, Wu DS, Miao X, Sun HY, Sun YH, Wang HY, Wang LH.
Journal
Cancer Res
Abstract
Sunitinib resistance is a major challenge for advanced renal cell carcinoma (RCC). Understanding the (show more...)Sunitinib resistance is a major challenge for advanced renal cell carcinoma (RCC). Understanding the underlying mechanisms and developing effective strategies against sunitinib resistance are highly desired in the clinic. Here we identified an lncRNA, named lncARSR (lncRNA Activated in RCC with Sunitinib Resistance), which correlated with clinically poor sunitinib response. lncARSR promoted sunitinib resistance via competitively binding miR-34/miR-449 to facilitate AXL and c-MET expression in RCC cells. Furthermore, bioactive lncARSR could be incorporated into exosomes and transmitted to sensitive cells, thus disseminating sunitinib resistance. Treatment of sunitinib-resistant RCC with locked nucleic acids targeting lncARSR or an AXL/c-MET inhibitor restored sunitinib response. Therefore, lncARSR may serve as a predictor and a potential therapeutic target for sunitinib resistance. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
xenograft-derived sunitinib-sensitive clone
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
xenograft-derived sunitinib-sensitive clone
EV-producing cells
786-O
EV-harvesting Medium
Serum-containing medium
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9/ TSG101
Characterization: RNA analysis
RNAse treatment
Moment of RNAse treatment
After
RNAse type
RNase A
RNAse concentration
Not specified
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Not specified
Image type
Close-up
EV160015 4/4 Homo sapiens Cell culture supernatant dUC Qu L 2016 0%

Study summary

Full title
All authors
Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, Chen W, Liu F, Sun W, Li XF, Wang X, Wang Y, Xu ZY, Gao L, Yang Q, Xu B, Li YM, Fang ZY, Xu ZP, Bao Y, Wu DS, Miao X, Sun HY, Sun YH, Wang HY, Wang LH.
Journal
Cancer Res
Abstract
Sunitinib resistance is a major challenge for advanced renal cell carcinoma (RCC). Understanding the (show more...)Sunitinib resistance is a major challenge for advanced renal cell carcinoma (RCC). Understanding the underlying mechanisms and developing effective strategies against sunitinib resistance are highly desired in the clinic. Here we identified an lncRNA, named lncARSR (lncRNA Activated in RCC with Sunitinib Resistance), which correlated with clinically poor sunitinib response. lncARSR promoted sunitinib resistance via competitively binding miR-34/miR-449 to facilitate AXL and c-MET expression in RCC cells. Furthermore, bioactive lncARSR could be incorporated into exosomes and transmitted to sensitive cells, thus disseminating sunitinib resistance. Treatment of sunitinib-resistant RCC with locked nucleic acids targeting lncARSR or an AXL/c-MET inhibitor restored sunitinib response. Therefore, lncARSR may serve as a predictor and a potential therapeutic target for sunitinib resistance. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
xenograft-derived sunitinib-resistant clone
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
xenograft-derived sunitinib-resistant clone
EV-producing cells
786-O
EV-harvesting Medium
Serum-containing medium
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
TSG101/ CD9
Characterization: RNA analysis
RNAse treatment
Moment of RNAse treatment
After
RNAse type
RNase A
RNAse concentration
Not specified
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Not specified
Image type
Close-up
1 - 4 of 4
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV160015
species
Homo sapiens
sample type
Cell culture
cell type
786-O
condition
Control condition
xenograft-derived sunitinib-resistant clone
xenograft-derived sunitinib-sensitive clone
xenograft-derived sunitinib-resistant clone
separation protocol
dUC
dUC
dUC
dUC
Exp. nr.
1
2
3
4
EV-METRIC %
0
0
0
0