Search > Results

You searched for: EV160000 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, isolation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Isolation protocol
  • Gives a short, non-chronological overview of the different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Details EV-TRACK ID Experiment nr. Species Sample type Isolation protocol First author Year EV-METRIC
EV160000 1/1 Homo sapiens Milk DG
dUC
van Herwijnen MJ 2016 50%

Study summary

Full title
All authors
van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH
Journal
Mol Cell Proteomics
Abstract
Breast milk contains several macromolecular components with distinctive functions, whereby milk fat (show more...)Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of the whole milk proteome and illustrates that milk-derived EV are macromolecular components with a unique functional proteome. (hide)
EV-METRIC
50% (89th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Milk
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + dUC
Protein markers
EV: CD9/ Flotillin-1
non-EV: None
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Milk
Sample Condition
Control condition
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Density gradient
Density medium
Sucrose
Type
Continuous
Lowest density fraction
0.4M
Highest density fraction
2.5M
Sample volume (mL)
6.5
Orientation
Top-down (sample migrates downwards)
Rotor type
SW 40 Ti
Speed (g)
192000
Duration (min)
900-1080
Fraction volume (mL)
0.5
Fraction processing
Centrifugation
Pelleting: volume per fraction
38.5
Pelleting: duration (min)
65
Pelleting: rotor type
SW 28
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
253.9
Characterization: Protein analysis
PMID previous EV protein analysis
25206958
Extra characterization
Western Blot
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, Flotillin-1
Proteomics database
Yes
Fluorescent NTA
PMID previous EV particle analysis
25206958
Extra information
A different gradient protocol was used in the publication of the same group that was referred to for additional protein and particle analysis of milk-derived extracellular vesicles (PMID: 25206958).
1 - 1 of 1