Search > Results

You searched for: EV150031 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, isolation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Isolation protocol
  • Gives a short, non-chronological overview of the different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Details EV-TRACK ID Experiment nr. Species Sample type Isolation protocol First author Year EV-METRIC
EV150031 1/1 Homo sapiens Cell culture supernatant dUC
Iodixanol-DG (valid.)
van Niel G 2015 44%

Study summary

Full title
All authors
van Niel G, Bergam P, Di Cicco A, Hurbain I, Lo Cicero A, Dingli F, Palmulli R, Fort C, Potier MC, Schurgers LJ, Loew D, Levy D, Raposo G
Journal
Cell Rep
Abstract
Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related dise (show more...)Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related diseases. Formation of mature amyloid fibrils is one defense mechanism to neutralize toxic prefibrillar oligomers. This mechanism is notably influenced by apolipoprotein E variants. Cells that produce mature amyloid fibrils to serve physiological functions must exploit specific mechanisms to avoid potential accumulation of toxic species. Pigment cells have tuned their endosomes to maximize the formation of functional amyloid from the protein PMEL. Here, we show that ApoE is associated with intraluminal vesicles (ILV) within endosomes and remain associated with ILVs when they are secreted as exosomes. ApoE functions in the ESCRT-independent sorting mechanism of PMEL onto ILVs and regulates the endosomal formation of PMEL amyloid fibrils in vitro and in vivo. This process secures the physiological formation of amyloid fibrils by exploiting ILVs as amyloid nucleating platforms. (hide)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
Endosomes
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Iodixanol-DG (valid.)
Protein markers
EV: CD63/ TSG101/ ApoE
non-EV: None
Proteomics
yes
EV density (g/ml)
1.06-1.15
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
60
Density gradient
Only used for validation of main results
1
Density medium
Iodixanol
Lowest density fraction
10
Highest density fraction
40
Orientation
Top-down
Speed (g)
100000
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD63/ TSG101/ ApoE
ELISA
Detected EV-associated proteins
ApoE
Fluorescent NTA
Characterization: Particle analysis
EM
EM-type
immune EM/ cryo EM
Image type
Close-up, Wide-field
1 - 1 of 1