Search > Results

You searched for: EV140158 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, isolation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Isolation protocol
  • Gives a short, non-chronological overview of the different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Details EV-TRACK ID Experiment nr. Species Sample type Isolation protocol First author Year EV-METRIC
EV140158 2/2 Homo sapiens Cell culture supernatant 0.1 µm filter
Sucrose-DG (valid.)
Fuhrmann G 2014 67%

Study summary

Full title
All authors
Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM
Journal
J Control Release
Abstract
Extracellular vesicles (EVs) are phospholipid-based particles endogenously produced by cells. Their (show more...)Extracellular vesicles (EVs) are phospholipid-based particles endogenously produced by cells. Their natural composition and selective cell interactions make them promising drug carriers. However, in order to harness their properties, efficient exogenous drug encapsulation methods need to be investigated. Here, EVs from various cellular origins (endothelial, cancer and stem cells) were produced and characterised for size and composition. Porphyrins of different hydrophobicities were employed as model drugs and encapsulated into EVs using various passive and active methods (electroporation, saponin, extrusion and dialysis). Hydrophobic compounds loaded very efficiently into EVs and at significantly higher amounts than into standard liposomes composed of phosphocholine and cholesterol using passive incubation. Moreover, loading into EVs significantly increased the cellular uptake by >60% and the photodynamic effect of hydrophobic porphyrins in vitro compared to free or liposome encapsulated drug. The active encapsulation techniques, with the saponin-assisted method in particular, allowed an up to 11 fold higher drug loading of hydrophilic porphyrins compared to passive methods. EVs loaded with hydrophilic porphyrins induced a stronger phototoxic effect than free drug in a cancer cell model. Our findings create a firm basis for the development of EVs as smart drug carriers based on straightforward and transferable methods. (hide)
EV-METRIC
67% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
0.1 µm filter + Sucrose-DG (valid.)
Protein markers
EV: CD63/ CD40/ Phosphatidylserine
non-EV: None
Proteomics
no
EV density (g/ml)
1.09-1.11
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Density gradient
Only used for validation of main results
1
Density medium
Sucrose
Lowest density fraction
8
Highest density fraction
60
Orientation
Bottom-up
Filtration steps
0.2µm > x > 0.1µm
Western Blot
Detected EV-associated proteins
CD40/ Phosphatidylserine
ELISA
Detected EV-associated proteins
CD40/ Phosphatidylserine
Fluorescent NTA
Characterization: Particle analysis
DLS
NTA
Particle analysis: flow cytometry
EM
EM-type
transmission EM
Image type
Close-up
EV140158 1/2 Homo sapiens Cell culture supernatant dUC Fuhrmann G 2014 0%

Study summary

Full title
All authors
Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM
Journal
J Control Release
Abstract
Extracellular vesicles (EVs) are phospholipid-based particles endogenously produced by cells. Their (show more...)Extracellular vesicles (EVs) are phospholipid-based particles endogenously produced by cells. Their natural composition and selective cell interactions make them promising drug carriers. However, in order to harness their properties, efficient exogenous drug encapsulation methods need to be investigated. Here, EVs from various cellular origins (endothelial, cancer and stem cells) were produced and characterised for size and composition. Porphyrins of different hydrophobicities were employed as model drugs and encapsulated into EVs using various passive and active methods (electroporation, saponin, extrusion and dialysis). Hydrophobic compounds loaded very efficiently into EVs and at significantly higher amounts than into standard liposomes composed of phosphocholine and cholesterol using passive incubation. Moreover, loading into EVs significantly increased the cellular uptake by >60% and the photodynamic effect of hydrophobic porphyrins in vitro compared to free or liposome encapsulated drug. The active encapsulation techniques, with the saponin-assisted method in particular, allowed an up to 11 fold higher drug loading of hydrophilic porphyrins compared to passive methods. EVs loaded with hydrophilic porphyrins induced a stronger phototoxic effect than free drug in a cancer cell model. Our findings create a firm basis for the development of EVs as smart drug carriers based on straightforward and transferable methods. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Equal to or above 150,000 g
Pelleting: time(min)
60
Fluorescent NTA
Characterization: Particle analysis
NTA
1 - 2 of 2
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV140158
species
Homo sapiens
sample type
Cell culture
isolation protocol
0.1 µm filter
Sucrose-DG
dUC
case number
2
1
EV-METRIC %
67
0