Search > Results

You searched for: EV140111 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, isolation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Isolation protocol
  • Gives a short, non-chronological overview of the different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Details EV-TRACK ID Experiment nr. Species Sample type Isolation protocol First author Year EV-METRIC
EV140111 2/2 Homo sapiens Cell culture supernatant dUC Cypryk W 2014 57%

Study summary

Full title
All authors
Cypryk W, Ohman T, Eskelinen EL, Matikainen S, Nyman TA
Journal
J Proteome Res
Abstract
Fungal infections (mycoses) are common diseases of varying severity that cause problems, especially (show more...)Fungal infections (mycoses) are common diseases of varying severity that cause problems, especially to immunologically compromised people. Fungi express a variety of pathogen-associated molecular patterns on their surface including ?-glucans, which are important immunostimulatory components of fungal cell walls. During stimulatory conditions of infection and colonization, besides intensive intracellular response, human cells actively communicate on the intercellular level by secreting proteins and other biomolecules with several mechanisms. Vesicular secretion remains one of the most important paths for the proteins to exit the cell. Here, we have used high-throughput quantitative proteomics combined with bioinformatics to characterize and quantify vesicle-mediated protein release from ?-glucan-stimulated human macrophages differentiated in vitro from primary blood monocytes. We show that ?-glucan stimulation induces vesicle-mediated protein secretion. Proteomic study identified 540 distinct proteins from the vesicles, and the identified proteins show a proteomic signature characteristic for their cellular origin. Importantly, we identified several receptors, including cation-dependent mannose-6-phosphate receptor, macrophage scavenger receptor, and P2X7 receptor, that have not been identified from vesicles before. Proteomic data together with detailed pathway and network analysis showed that integrins and their cytoplasmic cargo proteins are highly abundant in extracellular vesicles released upon ?-glucan stimulation. In conclusion, the present data provides a solid basis for further studies on the functional role of vesicular protein secretion upon fungal infection. (hide)
EV-METRIC
57% (95th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
138.6 (pelleting)
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
60
Pelleting: rotor type
SW55
Pelleting: adjusted k-factor
138.6
Wash: volume per pellet (ml)
5
Characterization: Protein analysis
Fluorescent NTA
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM/ immune EM
Image type
Close-up, Wide-field
EV140111 1/2 Homo sapiens Cell culture supernatant dUC Cypryk W 2014 44%

Study summary

Full title
All authors
Cypryk W, Ohman T, Eskelinen EL, Matikainen S, Nyman TA
Journal
J Proteome Res
Abstract
Fungal infections (mycoses) are common diseases of varying severity that cause problems, especially (show more...)Fungal infections (mycoses) are common diseases of varying severity that cause problems, especially to immunologically compromised people. Fungi express a variety of pathogen-associated molecular patterns on their surface including ?-glucans, which are important immunostimulatory components of fungal cell walls. During stimulatory conditions of infection and colonization, besides intensive intracellular response, human cells actively communicate on the intercellular level by secreting proteins and other biomolecules with several mechanisms. Vesicular secretion remains one of the most important paths for the proteins to exit the cell. Here, we have used high-throughput quantitative proteomics combined with bioinformatics to characterize and quantify vesicle-mediated protein release from ?-glucan-stimulated human macrophages differentiated in vitro from primary blood monocytes. We show that ?-glucan stimulation induces vesicle-mediated protein secretion. Proteomic study identified 540 distinct proteins from the vesicles, and the identified proteins show a proteomic signature characteristic for their cellular origin. Importantly, we identified several receptors, including cation-dependent mannose-6-phosphate receptor, macrophage scavenger receptor, and P2X7 receptor, that have not been identified from vesicles before. Proteomic data together with detailed pathway and network analysis showed that integrins and their cytoplasmic cargo proteins are highly abundant in extracellular vesicles released upon ?-glucan stimulation. In conclusion, the present data provides a solid basis for further studies on the functional role of vesicular protein secretion upon fungal infection. (hide)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
295 (pelleting)
Protein markers
EV: Alix/ TSG101/ Annexin1/ Tubulin
non-EV: None
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
60
Pelleting: rotor type
SW28
Pelleting: adjusted k-factor
295.0
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ TSG101/ Annexin1/ Tubulin
ELISA
Detected EV-associated proteins
Annexin1/ Tubulin
Fluorescent NTA
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM/ immune EM
Image type
Close-up, Wide-field
1 - 2 of 2
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV140111
species
Homo sapiens
sample type
Cell culture
isolation protocol
dUC
dUC
case number
2
1
EV-METRIC %
57
44