Search > Results

You searched for: EV140046 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, isolation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Isolation protocol
  • Gives a short, non-chronological overview of the different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Details EV-TRACK ID Experiment nr. Species Sample type Isolation protocol First author Year EV-METRIC
EV140046 1/1 Bacillus subtilis Bacteria 0.2 µm filter
0.8 µm
dUC
Iodixanol-DG (valid.)
UF
Brown L 2014 57%

Study summary

Full title
All authors
Brown L, Kessler A, Cabezas-Sanchez P, Luque-Garcia JL, Casadevall A
Journal
Mol Microbiol
Abstract
Previously, extracellular vesicle production in Gram-positive bacteria was dismissed due to the abse (show more...)Previously, extracellular vesicle production in Gram-positive bacteria was dismissed due to the absence of an outer membrane, where Gram-negative vesicles originate, and the difficulty in envisioning how such a process could occur through the cell wall. However, recent work has shown that Gram-positive bacteria produce extracellular vesicles and that the vesicles are biologically active. In this study, we show that Bacillus subtilis produces extracellular vesicles similar in size and morphology to other bacteria, characterized vesicles using a variety of techniques, provide evidence that these vesicles are actively produced by cells, show differences in vesicle production between strains, and identified a mechanism for such differences based on vesicle disruption. We found that in wild strains of B. subtilis, surfactin disrupted vesicles while in laboratory strains harbouring a mutation in the gene sfp, vesicles accumulated in the culture supernatant. Surfactin not only lysed B. subtilis vesicles, but also vesicles from Bacillus anthracis, indicating a mechanism that crossed species boundaries. To our knowledge, this is the first time a gene and a mechanism has been identified in the active disruption of extracellular vesicles and subsequent release of vesicular cargo in Gram-positive bacteria. We also identify a new mechanism of action for surfactin. (hide)
EV-METRIC
57% (95th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Bacteria
Focus vesicles
extracellular vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
0.2 µm filter + 0.8 µm + dUC + Iodixanol-DG (valid.) + UF
Protein markers
EV: None
non-EV: None
Proteomics
yes
TEM measurements
137.69999999999999
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Bacillus subtilis
Sample Type
Bacteria
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting: time(min)
60
Density gradient
Only used for validation of main results
1
Density medium
Iodixanol
Lowest density fraction
10
Highest density fraction
30
Orientation
Bottom-up
Filtration steps
> 0.45 µm, 0.22µm or 0.2µm
Characterization: Protein analysis
Fluorescent NTA
Characterization: Particle analysis
DLS
EM
EM-type
transmission EM/ immune EM
Image type
Close-up, Wide-field
1 - 1 of 1