Search > Results

You searched for: EV130137 (EV-TRACK ID)

Showing 1 - 3 of 3

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, isolation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Isolation protocol
  • Gives a short, non-chronological overview of the different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Experiment number
  • Experiments differ in Sample type/Isolation method
Experiment number
  • Experiments differ in Sample type/Isolation method
Experiment number
  • Experiments differ in Sample type/Isolation method
Details EV-TRACK ID Experiment nr. Species Sample type Isolation protocol First author Year EV-METRIC
EV130137 3/3 Mus musculus
Rattus norvegicus/rattus
Cell culture supernatant 0.2 µm filter
Density cushion (valid.)
dUC
Sucrose-DG (valid.)
Royo F 2013 44%

Study summary

Full title
All authors
Royo F, Schlangen K, Palomo L, Gonzalez E, Conde-Vancells J, Berisa A, Aransay AM, Falcon-Perez JM
Journal
PLoS One
Abstract
The discovery that the cells communicate through emission of vesicles has opened new opportunities f (show more...)The discovery that the cells communicate through emission of vesicles has opened new opportunities for better understanding of physiological and pathological mechanisms. This discovery also provides a novel source for non-invasive disease biomarker research. Our group has previously reported that hepatocytes release extracellular vesicles with protein content reflecting the cell-type of origin. Here, we show that the extracellular vesicles released by hepatocytes also carry RNA. We report the messenger RNA composition of extracellular vesicles released in two non-tumoral hepatic models: primary culture of rat hepatocytes and a progenitor cell line obtained from a mouse foetal liver. We describe different subpopulations of extracellular vesicles with different densities and protein and RNA content. We also show that the RNA cargo of extracellular vesicles released by primary hepatocytes can be transferred to rat liver stellate-like cells and promote their activation. Finally, we provide in vitro and in vivo evidence that liver-damaging drugs galactosamine, acetaminophen, and diclofenac modify the RNA content of these vesicles. To summarize, we show that the extracellular vesicles secreted by hepatocytes contain various RNAs. These vesicles, likely to be involved in the activation of stellate cells, might become a new source for non-invasive identification of the liver toxicity markers. (hide)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
0.2 µm filter + Density cushion (valid.) + dUC + Sucrose-DG (valid.)
Protein markers
EV: CD81/ Flotilin1/ TSG101/ Aip1
non-EV: None
Proteomics
no
EV density (g/ml)
1.12-1.2;1.19-1.23
Show all info
Study aim
Omics
Sample
Species
Mus musculus / Rattus norvegicus/rattus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
60
Density gradient
Only used for validation of main results
1
Density medium
Sucrose
Lowest density fraction
0.25
Highest density fraction
2
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD81/ Flotilin1/ TSG101/ Aip1
ELISA
Detected EV-associated proteins
Aip1
Fluorescent NTA
Characterization: Particle analysis
NTA
EM
EM-type
cryo EM
Image type
Close-up
EV130137 1/3 Mus musculus
Rattus norvegicus/rattus
Cell culture supernatant Commercial Royo F 2013 0%

Study summary

Full title
All authors
Royo F, Schlangen K, Palomo L, Gonzalez E, Conde-Vancells J, Berisa A, Aransay AM, Falcon-Perez JM
Journal
PLoS One
Abstract
The discovery that the cells communicate through emission of vesicles has opened new opportunities f (show more...)The discovery that the cells communicate through emission of vesicles has opened new opportunities for better understanding of physiological and pathological mechanisms. This discovery also provides a novel source for non-invasive disease biomarker research. Our group has previously reported that hepatocytes release extracellular vesicles with protein content reflecting the cell-type of origin. Here, we show that the extracellular vesicles released by hepatocytes also carry RNA. We report the messenger RNA composition of extracellular vesicles released in two non-tumoral hepatic models: primary culture of rat hepatocytes and a progenitor cell line obtained from a mouse foetal liver. We describe different subpopulations of extracellular vesicles with different densities and protein and RNA content. We also show that the RNA cargo of extracellular vesicles released by primary hepatocytes can be transferred to rat liver stellate-like cells and promote their activation. Finally, we provide in vitro and in vivo evidence that liver-damaging drugs galactosamine, acetaminophen, and diclofenac modify the RNA content of these vesicles. To summarize, we show that the extracellular vesicles secreted by hepatocytes contain various RNAs. These vesicles, likely to be involved in the activation of stellate cells, might become a new source for non-invasive identification of the liver toxicity markers. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Commercial
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Mus musculus / Rattus norvegicus/rattus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Commercial kit
ExoQuick
Fluorescent NTA
Characterization: Particle analysis
EV130137 2/3 Rattus norvegicus/rattus Serum Commercial Royo F 2013 0%

Study summary

Full title
All authors
Royo F, Schlangen K, Palomo L, Gonzalez E, Conde-Vancells J, Berisa A, Aransay AM, Falcon-Perez JM
Journal
PLoS One
Abstract
The discovery that the cells communicate through emission of vesicles has opened new opportunities f (show more...)The discovery that the cells communicate through emission of vesicles has opened new opportunities for better understanding of physiological and pathological mechanisms. This discovery also provides a novel source for non-invasive disease biomarker research. Our group has previously reported that hepatocytes release extracellular vesicles with protein content reflecting the cell-type of origin. Here, we show that the extracellular vesicles released by hepatocytes also carry RNA. We report the messenger RNA composition of extracellular vesicles released in two non-tumoral hepatic models: primary culture of rat hepatocytes and a progenitor cell line obtained from a mouse foetal liver. We describe different subpopulations of extracellular vesicles with different densities and protein and RNA content. We also show that the RNA cargo of extracellular vesicles released by primary hepatocytes can be transferred to rat liver stellate-like cells and promote their activation. Finally, we provide in vitro and in vivo evidence that liver-damaging drugs galactosamine, acetaminophen, and diclofenac modify the RNA content of these vesicles. To summarize, we show that the extracellular vesicles secreted by hepatocytes contain various RNAs. These vesicles, likely to be involved in the activation of stellate cells, might become a new source for non-invasive identification of the liver toxicity markers. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
extracellular vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Commercial
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Rattus norvegicus/rattus
Sample Type
Serum
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Commercial kit
ExoQuick
Fluorescent NTA
Characterization: Particle analysis
1 - 3 of 3
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV130137
species
Mus musculus
Rattus norvegicus/rattus
Mus musculus
Rattus norvegicus/rattus
Rattus
norvegicus/rattus
sample type
Cell culture
Cell culture
Serum
sample type
EV Depleted
EV Depleted
isolation protocol
0.2 µm filter
DC (valid.)
dUC
Sucrose-DG
Commercial
Commercial
case number
3
1
2
EV-METRIC %
44
0
0