Search > Results

You searched for: EV130058 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, isolation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Isolation protocol
  • Gives a short, non-chronological overview of the different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Details EV-TRACK ID Experiment nr. Species Sample type Isolation protocol First author Year EV-METRIC
EV130058 1/1 Trichomonas vaginalis Parasite 0.2 µm filter
dUC
Sucrose-DG
UF
Twu O 2013 56%

Study summary

Full title
All authors
Twu O, de Miguel N, Lustig G, Stevens GC, Vashisht AA, Wohlschlegel JA, Johnson PJ
Journal
PLoS Pathog
Abstract
Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogential (show more...)Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogential tract where it remains extracellular and adheres to epithelial cells. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Here, we use a combination of methodologies including cell fractionation, immunofluorescence and electron microscopy, RNA, proteomic and cytokine analyses and cell adherence assays to examine pathogenic properties of T. vaginalis. We have found that T.vaginalis produces and secretes microvesicles with physical and biochemical properties similar to mammalian exosomes. The parasite-derived exosomes are characterized by the presence of RNA and core, conserved exosomal proteins as well as parasite-specific proteins. We demonstrate that T. vaginalis exosomes fuse with and deliver their contents to host cells and modulate host cell immune responses. Moreover, exosomes from highly adherent parasite strains increase the adherence of poorly adherent parasites to vaginal and prostate epithelial cells. In contrast, exosomes from poorly adherent strains had no measurable effect on parasite adherence. Exosomes from parasite strains that preferentially bind prostate cells increased binding of parasites to these cells relative to vaginal cells. In addition to establishing that parasite exosomes act to modulate host?parasite interactions, these studies are the first to reveal a potential role for exosomes in promoting parasite?parasite communication and host cell colonization. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Parasite
Focus vesicles
exosomes
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
0.2 µm filter + dUC + Sucrose-DG + UF
Adj. k-factor
25.32 (pelleting)
Protein markers
EV: Tspan1
non-EV: None
Proteomics
yes
EV density (g/ml)
1.03-1.25
Show all info
Study aim
Function
Sample
Species
Trichomonas vaginalis
Sample Type
Parasite
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
75
Pelleting: rotor type
TLA100
Pelleting: adjusted k-factor
25.32
Wash: volume per pellet (ml)
2
Density gradient
Density medium
Sucrose
Lowest density fraction
0.25
Highest density fraction
2
Orientation
Bottom-up
Speed (g)
100000
Pelleting-wash: volume per pellet (mL)
3
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Tspan1
ELISA
Detected EV-associated proteins
Tspan1
Fluorescent NTA
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Close-up
1 - 1 of 1