Search > Results

You searched for: EV130045 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Details EV-TRACK ID Experiment nr. Species Sample type separation protocol First author Year EV-METRIC
EV130045 1/1 Homo sapiens Urine (d)(U)C Lv LL 2013 43%

Study summary

Full title
All authors
Lv LL, Cao Y, Liu D, Xu M, Liu H, Tang RN, Ma KL, Liu BC
Journal
Int J Biol Sci
Abstract
Recent studies indicate that microRNA (miRNA) is contained within exosome. Here we sought to optimiz (show more...)Recent studies indicate that microRNA (miRNA) is contained within exosome. Here we sought to optimize the methodologies for the isolation and quantification of urinary exosomal microRNA as a prelude to biomarker discovery studies. Exosomes were isolated through ultracentrifugation and characterized by immunoelectron microscopy. To determine the RNA was confined inside exosomes, the pellet was treated with RNase before RNA isolation. The minimum urine volume, storage conditions for exosomes and exosomal miRNA was evaluated. The presence of miRNAs in patients with various kidney diseases was validated with real-time PCR. The result shows that miRNAs extracted from the exosomal fraction were resistant to RNase digestion and with high quality confirmed by agarose electrophoresis. 16 ml of urine was sufficient for miRNA isolation by absolute quantification with 4.15×10(5) copies/ul for miR-200c. Exosomes was stable at 4? 24h for shipping before stored at -80? and was stable in urine when stored at -80°C for 12 months. Exosomal miRNA was detectable despite 5 repeat freeze-thaw cycles. The detection of miRNA by quantitative PCR showed high reproducibility (>94% for intra-assay and >76% for inter-assay), high sensitivity (positive call 100% for CKD patients), broad dynamic range (8-log wide) and good linearity for quantification (R(2)>0.99). miR-29c and miR-200c showed different expression in different types of kidney disease. In summary, the presence of urinary exosomal miRNA was confirmed for patients with a diversity of chronic kidney disease. The conditions of urine collection, storage and miRNA detection determined in this study may be useful for future biomarker discovery efforts. (hide)
EV-METRIC
43% (73rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
DNF
Focus vesicles
exosomes / microvesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV:
non-EV:
Proteomics
no
TEM measurements
30-120
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
60
Characterization: Particle analysis
EM
EM-type
transmission EM/ immune EM
Proteïns
AQP2; CD9; Alix
Image type
Close-up, Wide-field
1 - 1 of 1