Search > Results

You searched for: EV120168 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, isolation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Isolation protocol
  • Gives a short, non-chronological overview of the different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Details EV-TRACK ID Experiment nr. Species Sample type Isolation protocol First author Year EV-METRIC
EV120168 1/1 Homo sapiens Urine dUC Wang Z 2012 14%

Study summary

Full title
All authors
Wang Z, Hill S, Luther JM, Hachey DL, Schey KL
Journal
Proteomics
Abstract
Exosomes are membrane vesicles that are secreted by cells upon fusion of multivesicular bodies with (show more...)Exosomes are membrane vesicles that are secreted by cells upon fusion of multivesicular bodies with the plasma membrane. Exosomal proteomics has emerged as a powerful approach to understand the molecular composition of exosomes and has potential to accelerate biomarker discovery. Different proteomic analysis methods have been previously employed to establish several exosome protein databases. In this study, TFE solution-phase digestion was compared with in-gel digestion and found to yield similar results. Proteomic analysis of urinary exosomes was performed by multidimensional protein identification technology (MudPIT) after TFE digestion. Nearly, 3280 proteins were identified from nine human urine samples with 31% overlap among nine samples. Gene ontology (GO) analysis, coupled with detection of all of the members of ESCRT machinery complex, supports the multivesicular origin of these particles. These results significantly expand the existing database of urinary exosome proteins. Our results also indicate that more than 1000 proteins can be detected from exosomes prepared from as little as 25 mL of urine. This study provides the largest set of proteins present in human urinary exosome proteomes, provides a valuable reference for future studies, and provides methods that can be applied to exosomal proteomic analysis from other tissue sources. (hide)
EV-METRIC
14% (41st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
DNF
Focus vesicles
exosomes
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Urine
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting: time(min)
60
Characterization: Protein analysis
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
1 - 1 of 1