Search > Results

You searched for: EV120152 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV120152 1/1 Homo sapiens Urine (d)(U)C Pisitkun T 2012 14%

Study summary

Full title
All authors
Pisitkun T, Gandolfo MT, Das S, Knepper MA, Bagnasco SM
Journal
Proteomics Clin Appl
Abstract
PURPOSE: In mass spectrometry (MS)-based studies to discover urinary protein biomarkers, an importan (show more...)PURPOSE: In mass spectrometry (MS)-based studies to discover urinary protein biomarkers, an important question is how to analyze the data to find the most promising potential biomarkers to be advanced to large-scale validation studies. Here, we describe a systems biology-based approach to address this question. EXPERIMENTAL DESIGN: We analyzed large-scale liquid chromatography-tandem mass spectrometry (LC-MS/MS) data of urinary exosomes from renal allograft recipients with biopsy-proven evidence of immunological rejection or tubular injury (TI). We asked whether bioinformatic analysis of urinary exosomal proteins can identify biological-process based protein groups that correlate with biopsy findings and whether the protein groups fit with general knowledge of the pathophysiological mechanisms involved. RESULTS: LC-MS/MS analysis of urinary exosomal proteomes identified more than 1000 proteins in each pathologic group. These protein lists were analyzed computationally to identify the Biological Process and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway terms that are significantly associated with each pathological group. Among the most informative terms for each group were: sodium ion transport for TI; immune response for all rejection; epithelial cell differentiation for cell-mediated rejection; and acute inflammatory response for antibody-mediated rejection. Based on these terms, candidate biomarkers were identified using a novel strategy to allow a dichotomous classification between different pathologic categories. CONCLUSIONS AND CLINICAL RELEVANCE: The terms and candidate biomarkers identified make rational connections to pathophysiological mechanisms, suggesting that the described bioinformatic approach will be useful in advancing large-scale biomarker identification studies toward a validation phase. (hide)
EV-METRIC
14% (40th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV:
non-EV:
Proteomics
yes
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV120152
species
Homo sapiens
sample type
Urine
condition
NAY
separation protocol
(d)(U)C
Exp. nr.
1
EV-METRIC %
14