Search > Results

You searched for: EV120112 (EV-TRACK ID)

Showing 1 - 4 of 4

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV120112 3/4 Equus caballus Follicular fluid (d)(U)C
ExoQuick
da Silveira JC 2012 25%

Study summary

Full title
All authors
da Silveira JC, Veeramachaneni DN, Winger QA, Carnevale EM, Bouma GJ
Journal
Biol Reprod
Abstract
Proper cell communication within the ovarian follicle is critical for the growth and maturation of a (show more...)Proper cell communication within the ovarian follicle is critical for the growth and maturation of a healthy oocyte that can be fertilized and develop into an embryo. Cell communication within the follicle involves many signaling molecules and is affected by maternal age. Recent studies indicate that cell communication can be mediated through secretion and uptake of small membrane-enclosed vesicles. The goals of this study were to 1) identify cell-secreted vesicles (microvesicles and exosomes) containing miRNAs and proteins within ovarian follicular fluid and 2) determine if miRNA level differs in exosomes isolated from follicular fluid in young compared to old mares. We demonstrate the presence of vesicles resembling microvesicles and exosomes in ovarian follicular fluid using transmission electron microscopy and CD63-positive and RNA containing vesicles using flow cytometry. Moreover, proteomics analysis reveals that follicular fluid-isolated exosomes contain both known exosomal proteins and proteins not previously reported in isolated exosomes. MicroRNAs were detected in microvesicle and exosomes preparations isolated from follicular fluid by real-time PCR analysis. Uptake of fluorescent-labeled microvesicles by granulosa cells was examined using in vitro and in vivo approaches. MicroRNA expression profiling reveals that miRNAs in microvesicle and exosome preparations isolated from follicular fluid also are present within surrounding granulosa and cumulus cells. These studies revealed that cell communication within the mammalian ovarian follicle may involve transfer of bioactive material by microvesicles and exosomes. Finally, miRNAs present in exosomes from ovarian follicular fluid varied with the age of the mare, and a number of different miRNAs were detected in young vs. old mare follicular fluid. (hide)
EV-METRIC
25% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Follicular fluid
Sample origin
NAY
Focus vesicles
Vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
ExoQuick
Protein markers
EV: HSP70
non-EV:
Proteomics
yes
Show all info
Study aim
Omics
Sample
Species
Equus caballus
Sample Type
Follicular fluid
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
HSP70
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV120112 1/4 Equus caballus Serum (d)(U)C da Silveira JC 2012 14%

Study summary

Full title
All authors
da Silveira JC, Veeramachaneni DN, Winger QA, Carnevale EM, Bouma GJ
Journal
Biol Reprod
Abstract
Proper cell communication within the ovarian follicle is critical for the growth and maturation of a (show more...)Proper cell communication within the ovarian follicle is critical for the growth and maturation of a healthy oocyte that can be fertilized and develop into an embryo. Cell communication within the follicle involves many signaling molecules and is affected by maternal age. Recent studies indicate that cell communication can be mediated through secretion and uptake of small membrane-enclosed vesicles. The goals of this study were to 1) identify cell-secreted vesicles (microvesicles and exosomes) containing miRNAs and proteins within ovarian follicular fluid and 2) determine if miRNA level differs in exosomes isolated from follicular fluid in young compared to old mares. We demonstrate the presence of vesicles resembling microvesicles and exosomes in ovarian follicular fluid using transmission electron microscopy and CD63-positive and RNA containing vesicles using flow cytometry. Moreover, proteomics analysis reveals that follicular fluid-isolated exosomes contain both known exosomal proteins and proteins not previously reported in isolated exosomes. MicroRNAs were detected in microvesicle and exosomes preparations isolated from follicular fluid by real-time PCR analysis. Uptake of fluorescent-labeled microvesicles by granulosa cells was examined using in vitro and in vivo approaches. MicroRNA expression profiling reveals that miRNAs in microvesicle and exosome preparations isolated from follicular fluid also are present within surrounding granulosa and cumulus cells. These studies revealed that cell communication within the mammalian ovarian follicle may involve transfer of bioactive material by microvesicles and exosomes. Finally, miRNAs present in exosomes from ovarian follicular fluid varied with the age of the mare, and a number of different miRNAs were detected in young vs. old mare follicular fluid. (hide)
EV-METRIC
14% (56th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
NAY
Focus vesicles
Vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
138.6 (pelleting) / 138.6 (washing)
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Equus caballus
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW55
Pelleting: adjusted k-factor
138.6
Wash: Rotor Type
SW55
Wash: adjusted k-factor
138.6
Characterization: Particle analysis
None
EV120112 2/4 Equus caballus Follicular fluid (d)(U)C da Silveira JC 2012 14%

Study summary

Full title
All authors
da Silveira JC, Veeramachaneni DN, Winger QA, Carnevale EM, Bouma GJ
Journal
Biol Reprod
Abstract
Proper cell communication within the ovarian follicle is critical for the growth and maturation of a (show more...)Proper cell communication within the ovarian follicle is critical for the growth and maturation of a healthy oocyte that can be fertilized and develop into an embryo. Cell communication within the follicle involves many signaling molecules and is affected by maternal age. Recent studies indicate that cell communication can be mediated through secretion and uptake of small membrane-enclosed vesicles. The goals of this study were to 1) identify cell-secreted vesicles (microvesicles and exosomes) containing miRNAs and proteins within ovarian follicular fluid and 2) determine if miRNA level differs in exosomes isolated from follicular fluid in young compared to old mares. We demonstrate the presence of vesicles resembling microvesicles and exosomes in ovarian follicular fluid using transmission electron microscopy and CD63-positive and RNA containing vesicles using flow cytometry. Moreover, proteomics analysis reveals that follicular fluid-isolated exosomes contain both known exosomal proteins and proteins not previously reported in isolated exosomes. MicroRNAs were detected in microvesicle and exosomes preparations isolated from follicular fluid by real-time PCR analysis. Uptake of fluorescent-labeled microvesicles by granulosa cells was examined using in vitro and in vivo approaches. MicroRNA expression profiling reveals that miRNAs in microvesicle and exosome preparations isolated from follicular fluid also are present within surrounding granulosa and cumulus cells. These studies revealed that cell communication within the mammalian ovarian follicle may involve transfer of bioactive material by microvesicles and exosomes. Finally, miRNAs present in exosomes from ovarian follicular fluid varied with the age of the mare, and a number of different miRNAs were detected in young vs. old mare follicular fluid. (hide)
EV-METRIC
14% (31st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Follicular fluid
Sample origin
NAY
Focus vesicles
Vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
138.6 (pelleting) / 138.6 (washing)
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Equus caballus
Sample Type
Follicular fluid
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW55
Pelleting: adjusted k-factor
138.6
Wash: Rotor Type
SW55
Wash: adjusted k-factor
138.6
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV120112 4/4 Equus caballus Serum (d)(U)C
ExoQuick
da Silveira JC 2012 0%

Study summary

Full title
All authors
da Silveira JC, Veeramachaneni DN, Winger QA, Carnevale EM, Bouma GJ
Journal
Biol Reprod
Abstract
Proper cell communication within the ovarian follicle is critical for the growth and maturation of a (show more...)Proper cell communication within the ovarian follicle is critical for the growth and maturation of a healthy oocyte that can be fertilized and develop into an embryo. Cell communication within the follicle involves many signaling molecules and is affected by maternal age. Recent studies indicate that cell communication can be mediated through secretion and uptake of small membrane-enclosed vesicles. The goals of this study were to 1) identify cell-secreted vesicles (microvesicles and exosomes) containing miRNAs and proteins within ovarian follicular fluid and 2) determine if miRNA level differs in exosomes isolated from follicular fluid in young compared to old mares. We demonstrate the presence of vesicles resembling microvesicles and exosomes in ovarian follicular fluid using transmission electron microscopy and CD63-positive and RNA containing vesicles using flow cytometry. Moreover, proteomics analysis reveals that follicular fluid-isolated exosomes contain both known exosomal proteins and proteins not previously reported in isolated exosomes. MicroRNAs were detected in microvesicle and exosomes preparations isolated from follicular fluid by real-time PCR analysis. Uptake of fluorescent-labeled microvesicles by granulosa cells was examined using in vitro and in vivo approaches. MicroRNA expression profiling reveals that miRNAs in microvesicle and exosome preparations isolated from follicular fluid also are present within surrounding granulosa and cumulus cells. These studies revealed that cell communication within the mammalian ovarian follicle may involve transfer of bioactive material by microvesicles and exosomes. Finally, miRNAs present in exosomes from ovarian follicular fluid varied with the age of the mare, and a number of different miRNAs were detected in young vs. old mare follicular fluid. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
NAY
Focus vesicles
Vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
ExoQuick
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Equus caballus
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Particle analysis
None
1 - 4 of 4
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV120112
species
Equus caballus
sample type
Follicular fluid
Serum
Follicular fluid
Serum
condition
NAY
NAY
NAY
NAY
separation protocol
(d)(U)C
ExoQuick
(d)(U)C
(d)(U)C
(d)(U)C
ExoQuick
Exp. nr.
3
1
2
4
EV-METRIC %
25
14
14
0