Search > Results

You searched for: EV120103 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV120103 1/2 Homo sapiens Serum (d)(U)C
DG
de Hoog VC 2012 44%

Study summary

Full title
All authors
de Hoog VC, Timmers L, Schoneveld AH, Wang JW, van de Weg SM, Sze SK, van Keulen JK, Hoes AW, den Ruijter HM, de Kleijn DP, Mosterd A
Journal
Eur Heart J Acute Cardiovasc Care
Abstract
AIMS: Biomarkers are essential in the early detection of acute coronary syndromes (ACS). Serum extra (show more...)AIMS: Biomarkers are essential in the early detection of acute coronary syndromes (ACS). Serum extracellular vesicles are small vesicles in the plasma containing protein and RNA and have been shown to be involved in ACS-related processes like apoptosis and coagulation. Therefore, we hypothesized that serum extracellular vesicle protein levels are associated with ACS. METHODS AND RESULTS: Three serum extracellular vesicle proteins potentially associated with ACS were identified with differential Q-proteomics and were evaluated in 471 frozen serum samples of ACS-suspected patients presenting to the emergency department (30% of whom had an ACS). Protein levels were measured after vesicle isolation using ExoQuick. Mean serum extracellular vesicle concentration of the different proteins was compared between ACS and non-ACS patients. Selected proteins were tested in a univariate logistic regression model, as well as in a multivariate model to adjust for cardiovascular risk factors. A separate analysis was performed in men and women. In the multivariate logistic regression analysis, polygenic immunoglobulin receptor, (pIgR; OR 1.630, p=0.026), cystatin C (OR 1.641, p=0.021), and complement factor C5a (C5a, OR 1.495, p=0.025) were significantly associated with ACS, while total vesicle protein concentration was borderline significant. The association of the individual proteins with ACS was markedly stronger in men. CONCLUSIONS: These data show that serum extracellular vesicle pIgR, cystatin C, and C5a concentrations are independently associated with ACS and that there are pronounced gender differences. These observations should be validated in a large, prospective study to assess the potential role of vesicle content in the evaluation of patients suspected of having an ACS. (hide)
EV-METRIC
44% (86th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Protein markers
EV: CD9
non-EV:
Proteomics
yes
EV density (g/ml)
1.15-1.19
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Density gradient
Only used for validation of main results
Yes
Lowest density fraction
0.4
Highest density fraction
2.5
Orientation
Bottom-up
Rotor type
SW60
Speed (g)
100000
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
CD9
EV120103 2/2 Homo sapiens Serum (d)(U)C
ExoQuick
de Hoog VC 2012 0%

Study summary

Full title
All authors
de Hoog VC, Timmers L, Schoneveld AH, Wang JW, van de Weg SM, Sze SK, van Keulen JK, Hoes AW, den Ruijter HM, de Kleijn DP, Mosterd A
Journal
Eur Heart J Acute Cardiovasc Care
Abstract
AIMS: Biomarkers are essential in the early detection of acute coronary syndromes (ACS). Serum extra (show more...)AIMS: Biomarkers are essential in the early detection of acute coronary syndromes (ACS). Serum extracellular vesicles are small vesicles in the plasma containing protein and RNA and have been shown to be involved in ACS-related processes like apoptosis and coagulation. Therefore, we hypothesized that serum extracellular vesicle protein levels are associated with ACS. METHODS AND RESULTS: Three serum extracellular vesicle proteins potentially associated with ACS were identified with differential Q-proteomics and were evaluated in 471 frozen serum samples of ACS-suspected patients presenting to the emergency department (30% of whom had an ACS). Protein levels were measured after vesicle isolation using ExoQuick. Mean serum extracellular vesicle concentration of the different proteins was compared between ACS and non-ACS patients. Selected proteins were tested in a univariate logistic regression model, as well as in a multivariate model to adjust for cardiovascular risk factors. A separate analysis was performed in men and women. In the multivariate logistic regression analysis, polygenic immunoglobulin receptor, (pIgR; OR 1.630, p=0.026), cystatin C (OR 1.641, p=0.021), and complement factor C5a (C5a, OR 1.495, p=0.025) were significantly associated with ACS, while total vesicle protein concentration was borderline significant. The association of the individual proteins with ACS was markedly stronger in men. CONCLUSIONS: These data show that serum extracellular vesicle pIgR, cystatin C, and C5a concentrations are independently associated with ACS and that there are pronounced gender differences. These observations should be validated in a large, prospective study to assess the potential role of vesicle content in the evaluation of patients suspected of having an ACS. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
ExoQuick
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV120103
species
Homo sapiens
sample type
Serum
condition
NAY
separation protocol
(d)(U)C
DG
(d)(U)C
ExoQuick
Exp. nr.
1
2
EV-METRIC %
44
0