Search > Results

You searched for: EV110102 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV110102 1/2 Mus musculus NAY (d)(U)C
DC
Filtration
Martin-Jaular L 2011 25%

Study summary

Full title
All authors
Martin-Jaular L, Nakayasu ES, Ferrer M, Almeida IC, Del Portillo HA
Journal
PLoS One
Abstract
Exosomes are 30-100-nm membrane vesicles of endocytic origin that are released after the fusion of m (show more...)Exosomes are 30-100-nm membrane vesicles of endocytic origin that are released after the fusion of multivesicular bodies (MVBs) with the plasma membrane. While initial studies suggested that the role of exosomes was limited to the removal of proteins during the maturation of reticulocytes to erythrocytes, recent studies indicate that they are produced by different types of cells and are involved in promoting inter-cellular communication and antigen presentation. Here, we describe the isolation and characterization of exosomes from peripheral blood of BALB/c mice infected with the reticulocyte-prone non-lethal Plasmodium yoelii 17X strain. Importantly, proteomic analysis revealed the presence of parasite proteins in these vesicles. Moreover, immunization of mice with purified exosomes elicited IgG antibodies capable of recognizing P. yoelii-infected red blood cells. Furthermore, lethal challenge of immunized mice with the normocyte-prone lethal P. yoelii 17XL strain caused a significant attenuation in the course of parasitaemia, increased survival time, and altered the cell tropism to reticulocytes. These results were obtained also when the exosomes were isolated from a P. yoelii-infected reticulocyte culture indicating that reticulocyte-derived exosomes carry antigens and are involved in immune modulation. Moreover, inclusion of CpG ODN 1826 in exosome immunizations elicited IgG2a and IgG2b antibodies and promoted survival, clearance of parasites and subsequent sterile protection of 83% of the animals challenged with P. yoelli 17XL. To our knowledge, this is the first report of immune responses elicited by exosomes derived from reticulocytes opening new avenues for the modulation of anti-malaria responses. (hide)
EV-METRIC
25% (63rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
Filtration
Protein markers
EV: TFRC/ LAMP1
non-EV: CD3/ MHC2/ CD41
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Filtration steps
0.22µm or 0.2µm
Western Blot
Detected EV-associated proteins
LAMP1/ TFRC
ELISA
Detected EV-associated proteins
LAMP1/ TFRC
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV110102 2/2 Mus musculus Blood plasma (d)(U)C
DC
Filtration
Martin-Jaular L 2011 25%

Study summary

Full title
All authors
Martin-Jaular L, Nakayasu ES, Ferrer M, Almeida IC, Del Portillo HA
Journal
PLoS One
Abstract
Exosomes are 30-100-nm membrane vesicles of endocytic origin that are released after the fusion of m (show more...)Exosomes are 30-100-nm membrane vesicles of endocytic origin that are released after the fusion of multivesicular bodies (MVBs) with the plasma membrane. While initial studies suggested that the role of exosomes was limited to the removal of proteins during the maturation of reticulocytes to erythrocytes, recent studies indicate that they are produced by different types of cells and are involved in promoting inter-cellular communication and antigen presentation. Here, we describe the isolation and characterization of exosomes from peripheral blood of BALB/c mice infected with the reticulocyte-prone non-lethal Plasmodium yoelii 17X strain. Importantly, proteomic analysis revealed the presence of parasite proteins in these vesicles. Moreover, immunization of mice with purified exosomes elicited IgG antibodies capable of recognizing P. yoelii-infected red blood cells. Furthermore, lethal challenge of immunized mice with the normocyte-prone lethal P. yoelii 17XL strain caused a significant attenuation in the course of parasitaemia, increased survival time, and altered the cell tropism to reticulocytes. These results were obtained also when the exosomes were isolated from a P. yoelii-infected reticulocyte culture indicating that reticulocyte-derived exosomes carry antigens and are involved in immune modulation. Moreover, inclusion of CpG ODN 1826 in exosome immunizations elicited IgG2a and IgG2b antibodies and promoted survival, clearance of parasites and subsequent sterile protection of 83% of the animals challenged with P. yoelli 17XL. To our knowledge, this is the first report of immune responses elicited by exosomes derived from reticulocytes opening new avenues for the modulation of anti-malaria responses. (hide)
EV-METRIC
25% (54th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
Filtration
Protein markers
EV: TFRC/ LAMP1
non-EV: CD133/ CD401
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
LAMP1/ TFRC
ELISA
Detected EV-associated proteins
LAMP1/ TFRC
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV110102
species
Mus musculus
sample type
Cell culture
Blood plasma
cell type
NAY
NA
medium
EV Depleted
condition
NAY
NAY
separation protocol
(d)(U)C
DC
Filtration
(d)(U)C
DC
Filtration
Exp. nr.
1
2
EV-METRIC %
25
25