Search > Results

You searched for: EV110035 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV110035 1/1 Homo sapiens NAY (d)(U)C
DG
Cho JA 2011 14%

Study summary

Full title
All authors
Cho JA, Park H, Lim EH, Kim KH, Choi JS, Lee JH, Shin JW, Lee KW
Journal
Gynecol Oncol
Abstract
OBJECTIVE: Most tumor tissue is composed of parenchymal tumor cells and tumor stroma. Mesenchymal st (show more...)OBJECTIVE: Most tumor tissue is composed of parenchymal tumor cells and tumor stroma. Mesenchymal stem cells (MSCs) can function as precursors for tumor stromal cells, including myofibroblasts, which provide a favorable environment for tumor progression. A close relationship between tumor cells and MSCs in a tumor microenvironment has been described. Exosomes are small membrane vesicles that are enriched with a discrete set of cellular proteins, and are therefore expected to exert diverse biological functions according to cell origin. METHODS: In the current study, we determined the biological effect of exosomes from two ovarian cancer cell lines (SK-OV-3 and OVCAR-3) on adipose tissue-derived MSCs (ADSCs). RESULTS: Exosome treatment induced ADSCs to exhibit the typical characteristics of tumor-associated myofibroblasts, with increased expression of ?-SMA, and also increased expression of tumor-promoting factors (SDF-1 and TGF-?). This phenomenon was correlated with an increased expression of TGF-? receptors I and II. Analysis of TGF-? receptor-mediated downstream signaling pathways revealed that each exosome activated different signaling pathways, showing that exosomes from SK-OV-3 cells increased the phosphorylated form of SMAD2, which is essential in the SMAD-dependent pathway, whereas exosomes from OVCAR-3 cells increased the phosphorylated form of AKT, a representative SMAD-independent pathway. Taken together, exosomes from ovarian cancer cells induced the myofibroblastic phenotype and functionality in ADSCs by activating an intracellular signaling pathway, although the activated pathway could differ from exosome-to-exosome. CONCLUSION: The current study suggested that ovarian cancer-derived exosomes contribute to the generation of tumor-associated myofibroblasts from MSCs in tumor stroma. (hide)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Density gradient
Rotor type
SW41
Speed (g)
100000
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV110035
species
Homo sapiens
sample type
Cell culture
cell type
NAY
condition
NAY
separation protocol
(d)(U)C
DG
Exp. nr.
1
EV-METRIC %
14