Search > Results

You searched for: EV110029 (EV-TRACK ID)

Showing 1 - 3 of 3

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV110029 2/3 Homo sapiens Saliva (d)(U)C
Filtration
IAF
Lässer C 2011 29%

Study summary

Full title
All authors
Lässer C, Alikhani VS, Ekström K, Eldh M, Paredes PT, Bossios A, Sjöstrand M, Gabrielsson S, Lötvall J, Valadi H
Journal
J Transl Med
Abstract
BACKGROUND: Exosomes are 30-100 nm membrane vesicles of endocytic origin produced by numerous cells. (show more...)BACKGROUND: Exosomes are 30-100 nm membrane vesicles of endocytic origin produced by numerous cells. They can mediate diverse biological functions, including antigen presentation. Exosomes have recently been shown to contain functional RNA, which can be delivered to other cells. Exosomes may thus mediate biological functions either by surface-to-surface interactions with cells, or by the delivery of functional RNA to cells. Our aim was therefore to determine the presence of RNA in exosomes from human saliva, plasma and breast milk and whether these exosomes can be taken up by macrophages. METHOD: Exosomes were purified from human saliva, plasma and breast milk using ultracentrifugation and filtration steps. Exosomes were detected by electron microscopy and examined by flow cytometry. Flow cytometry was performed by capturing the exosomes on anti-MHC class II coated beads, and further stain with anti-CD9, anti-CD63 or anti-CD81. Breast milk exosomes were further analysed for the presence of Hsc70, CD81 and calnexin by Western blot. Total RNA was detected with a Bioanalyzer and mRNA was identified by the synthesis of cDNA using an oligo (dT) primer and analysed with a Bioanalyzer. The uptake of PKH67-labelled saliva and breast milk exosomes by macrophages was examined by measuring fluorescence using flow cytometry and fluorescence microscopy. RESULTS: RNA was detected in exosomes from all three body fluids. A portion of the detected RNA in plasma exosomes was characterised as mRNA. Our result extends the characterisation of exosomes in healthy humans and confirms the presence of RNA in human saliva and plasma exosomes and reports for the first time the presence of RNA in breast milk exosomes. Our results also show that the saliva and breast milk exosomes can be taken up by human macrophages. CONCLUSIONS: Exosomes in saliva, plasma and breast milk all contain RNA, confirming previous findings that exosomes from several sources contain RNA. Furthermore, exosomes are readily taken up by macrophages, supporting the notion that exosomal RNA can be shuttled between cells. (hide)
EV-METRIC
29% (52nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Saliva
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
IAF
Adj. k-factor
156.9 (pelleting)
Protein markers
EV: CD81/ CD63/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Saliva
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
70Ti;45Ti
Pelleting: adjusted k-factor
156.9
Filtration steps
0.22µm or 0.2µm
Immunoaffinity capture
Selected surface protein(s)
MHC2
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Selected surface protein(s)
Yes
Characterization: Particle analysis
EM
EM-type
immune EM
EM protein
CD63
Image type
Close-up
EV110029 1/3 Homo sapiens Milk (d)(U)C
Filtration
IAF
Lässer C 2011 14%

Study summary

Full title
All authors
Lässer C, Alikhani VS, Ekström K, Eldh M, Paredes PT, Bossios A, Sjöstrand M, Gabrielsson S, Lötvall J, Valadi H
Journal
J Transl Med
Abstract
BACKGROUND: Exosomes are 30-100 nm membrane vesicles of endocytic origin produced by numerous cells. (show more...)BACKGROUND: Exosomes are 30-100 nm membrane vesicles of endocytic origin produced by numerous cells. They can mediate diverse biological functions, including antigen presentation. Exosomes have recently been shown to contain functional RNA, which can be delivered to other cells. Exosomes may thus mediate biological functions either by surface-to-surface interactions with cells, or by the delivery of functional RNA to cells. Our aim was therefore to determine the presence of RNA in exosomes from human saliva, plasma and breast milk and whether these exosomes can be taken up by macrophages. METHOD: Exosomes were purified from human saliva, plasma and breast milk using ultracentrifugation and filtration steps. Exosomes were detected by electron microscopy and examined by flow cytometry. Flow cytometry was performed by capturing the exosomes on anti-MHC class II coated beads, and further stain with anti-CD9, anti-CD63 or anti-CD81. Breast milk exosomes were further analysed for the presence of Hsc70, CD81 and calnexin by Western blot. Total RNA was detected with a Bioanalyzer and mRNA was identified by the synthesis of cDNA using an oligo (dT) primer and analysed with a Bioanalyzer. The uptake of PKH67-labelled saliva and breast milk exosomes by macrophages was examined by measuring fluorescence using flow cytometry and fluorescence microscopy. RESULTS: RNA was detected in exosomes from all three body fluids. A portion of the detected RNA in plasma exosomes was characterised as mRNA. Our result extends the characterisation of exosomes in healthy humans and confirms the presence of RNA in human saliva and plasma exosomes and reports for the first time the presence of RNA in breast milk exosomes. Our results also show that the saliva and breast milk exosomes can be taken up by human macrophages. CONCLUSIONS: Exosomes in saliva, plasma and breast milk all contain RNA, confirming previous findings that exosomes from several sources contain RNA. Furthermore, exosomes are readily taken up by macrophages, supporting the notion that exosomal RNA can be shuttled between cells. (hide)
EV-METRIC
14% (21st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Milk
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
IAF
Protein markers
EV: CD81/ CD63/ CD9/ Hsc70
non-EV:
Proteomics
no
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Filtration steps
0.22µm or 0.2µm
Immunoaffinity capture
Selected surface protein(s)
MHC2
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Hsc70
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Hsc70
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Selected surface protein(s)
Yes
Characterization: Particle analysis
EM
EM-type
immune EM
EM protein
CD63
Image type
Close-up
EV110029 3/3 Homo sapiens Blood plasma (d)(U)C
Filtration
IAF
Lässer C 2011 14%

Study summary

Full title
All authors
Lässer C, Alikhani VS, Ekström K, Eldh M, Paredes PT, Bossios A, Sjöstrand M, Gabrielsson S, Lötvall J, Valadi H
Journal
J Transl Med
Abstract
BACKGROUND: Exosomes are 30-100 nm membrane vesicles of endocytic origin produced by numerous cells. (show more...)BACKGROUND: Exosomes are 30-100 nm membrane vesicles of endocytic origin produced by numerous cells. They can mediate diverse biological functions, including antigen presentation. Exosomes have recently been shown to contain functional RNA, which can be delivered to other cells. Exosomes may thus mediate biological functions either by surface-to-surface interactions with cells, or by the delivery of functional RNA to cells. Our aim was therefore to determine the presence of RNA in exosomes from human saliva, plasma and breast milk and whether these exosomes can be taken up by macrophages. METHOD: Exosomes were purified from human saliva, plasma and breast milk using ultracentrifugation and filtration steps. Exosomes were detected by electron microscopy and examined by flow cytometry. Flow cytometry was performed by capturing the exosomes on anti-MHC class II coated beads, and further stain with anti-CD9, anti-CD63 or anti-CD81. Breast milk exosomes were further analysed for the presence of Hsc70, CD81 and calnexin by Western blot. Total RNA was detected with a Bioanalyzer and mRNA was identified by the synthesis of cDNA using an oligo (dT) primer and analysed with a Bioanalyzer. The uptake of PKH67-labelled saliva and breast milk exosomes by macrophages was examined by measuring fluorescence using flow cytometry and fluorescence microscopy. RESULTS: RNA was detected in exosomes from all three body fluids. A portion of the detected RNA in plasma exosomes was characterised as mRNA. Our result extends the characterisation of exosomes in healthy humans and confirms the presence of RNA in human saliva and plasma exosomes and reports for the first time the presence of RNA in breast milk exosomes. Our results also show that the saliva and breast milk exosomes can be taken up by human macrophages. CONCLUSIONS: Exosomes in saliva, plasma and breast milk all contain RNA, confirming previous findings that exosomes from several sources contain RNA. Furthermore, exosomes are readily taken up by macrophages, supporting the notion that exosomal RNA can be shuttled between cells. (hide)
EV-METRIC
14% (38th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
IAF
Protein markers
EV: CD81/ CD63/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Filtration steps
0.22µm or 0.2µm
Immunoaffinity capture
Selected surface protein(s)
MHC2
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Selected surface protein(s)
Yes
Characterization: Particle analysis
EM
EM-type
immune EM
EM protein
CD63
Image type
Close-up
1 - 3 of 3
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV110029
species
Homo sapiens
sample type
Saliva
Milk
Blood plasma
condition
NAY
NAY
NAY
separation protocol
(d)(U)C
Filtration
IAF
(d)(U)C
Filtration
IAF
(d)(U)C
Filtration
IAF
Exp. nr.
2
1
3
EV-METRIC %
29
14
14