Search > Results

You searched for: EV110020 (EV-TRACK ID)

Showing 1 - 3 of 3

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV110020 2/3 Homo sapiens Serum (d)(U)C
DG
IAF
Rupp AK 2011 63%

Study summary

Full title
All authors
Rupp AK, Rupp C, Keller S, Brase JC, Ehehalt R, Fogel M, Moldenhauer G, Marmé F, Sültmann H, Altevogt P
Journal
Gynecol Oncol
Abstract
OBJECTIVE: Cancer cells in the body release soluble and membranous factors that manipulate the tumor (show more...)OBJECTIVE: Cancer cells in the body release soluble and membranous factors that manipulate the tumor environment to facilitate growth and survival. Recent years have provided evidence that small microvesicles that are termed exosomes may play a pivotal role in this process. Exosomes are membrane vesicles with a size of 40-100 nm that are released by both tumor and normal cells and can be found in various body fluids. Tumor-derived exosomes carry functional proteins, mRNAs, and miRNAs and could serve as novel platform for tumor diagnosis and prognosis. However, marker proteins that allow enrichment of tumor-derived exosomes over normal exosomes are less well defined. METHODS: We used Western blot analysis and antibody coupled magnetic beads to characterize CD24 and EpCAM as markers for exosomes. We investigated ovarian carcinoma ascites, pleural effusions and serum of breast carcinoma patients. As non-tumor derived control we used exosomes from ascites of liver cirrhosis patients. RESULTS: Exosomes could be isolated from all body fluids and contained marker proteins as well as miRNAs. We observed that CD24 and EpCAM were selectively present on ascites exosomes of tumor patients and copurified together on anti-EpCAM or anti-CD24 magnetic beads. In breast cancer patients CD24 was present but EpCAM was absent from serum exosomes. Instead, the intact EpCAM ectodomain was recovered in a soluble form. We provide evidence that EpCAM can be cleaved from exosomes via serum metalloproteinase(s). CONCLUSION: Loss of EpCAM on serum exosomes may hamper enrichment by immune-affinity isolation. We suggest that CD24 could be an additional marker for the enrichment of tumor-derived exosomes from blood. (hide)
EV-METRIC
63% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
IAF
Protein markers
EV: ADAM10/ CD9/ CD24
non-EV: EpCAM
Proteomics
no
EV density (g/ml)
1.04-1.14
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Density gradient
Only used for validation of main results
Yes
Lowest density fraction
0.25
Highest density fraction
2
Orientation
Top-down
Immunoaffinity capture
Selected surface protein(s)
EpCAM, CD24
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ ADAM10/ CD24
Detected contaminants
EpCAM
ELISA
Antibody details provided?
No
Detected EV-associated proteins
ADAM10/ CD24
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up, Wide-field
EV110020 3/3 Homo sapiens Ascites (d)(U)C
DG
IAF
Rupp AK 2011 50%

Study summary

Full title
All authors
Rupp AK, Rupp C, Keller S, Brase JC, Ehehalt R, Fogel M, Moldenhauer G, Marmé F, Sültmann H, Altevogt P
Journal
Gynecol Oncol
Abstract
OBJECTIVE: Cancer cells in the body release soluble and membranous factors that manipulate the tumor (show more...)OBJECTIVE: Cancer cells in the body release soluble and membranous factors that manipulate the tumor environment to facilitate growth and survival. Recent years have provided evidence that small microvesicles that are termed exosomes may play a pivotal role in this process. Exosomes are membrane vesicles with a size of 40-100 nm that are released by both tumor and normal cells and can be found in various body fluids. Tumor-derived exosomes carry functional proteins, mRNAs, and miRNAs and could serve as novel platform for tumor diagnosis and prognosis. However, marker proteins that allow enrichment of tumor-derived exosomes over normal exosomes are less well defined. METHODS: We used Western blot analysis and antibody coupled magnetic beads to characterize CD24 and EpCAM as markers for exosomes. We investigated ovarian carcinoma ascites, pleural effusions and serum of breast carcinoma patients. As non-tumor derived control we used exosomes from ascites of liver cirrhosis patients. RESULTS: Exosomes could be isolated from all body fluids and contained marker proteins as well as miRNAs. We observed that CD24 and EpCAM were selectively present on ascites exosomes of tumor patients and copurified together on anti-EpCAM or anti-CD24 magnetic beads. In breast cancer patients CD24 was present but EpCAM was absent from serum exosomes. Instead, the intact EpCAM ectodomain was recovered in a soluble form. We provide evidence that EpCAM can be cleaved from exosomes via serum metalloproteinase(s). CONCLUSION: Loss of EpCAM on serum exosomes may hamper enrichment by immune-affinity isolation. We suggest that CD24 could be an additional marker for the enrichment of tumor-derived exosomes from blood. (hide)
EV-METRIC
50% (84th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Ascites
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
IAF
Protein markers
EV: Annexin1/ CD24/ ADAM10/ HSP70/ EpCAM/ CD9
non-EV:
Proteomics
no
EV density (g/ml)
1.04-1.14
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Ascites
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Density gradient
Only used for validation of main results
Yes
Lowest density fraction
0.25
Highest density fraction
2
Orientation
Top-down
Immunoaffinity capture
Selected surface protein(s)
EpCAM, CD24
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ HSP70/ EpCAM/ ADAM10/ Annexin1/ CD24
ELISA
Antibody details provided?
No
Detected EV-associated proteins
EpCAM/ ADAM10/ Annexin1/ CD24
Characterization: Particle analysis
EM
EM-type
transmission EM/ immune EM
EM protein
CD81
Image type
Close-up, Wide-field
EV110020 1/3 Homo sapiens Pleural effusion (d)(U)C
DC
Rupp AK 2011 13%

Study summary

Full title
All authors
Rupp AK, Rupp C, Keller S, Brase JC, Ehehalt R, Fogel M, Moldenhauer G, Marmé F, Sültmann H, Altevogt P
Journal
Gynecol Oncol
Abstract
OBJECTIVE: Cancer cells in the body release soluble and membranous factors that manipulate the tumor (show more...)OBJECTIVE: Cancer cells in the body release soluble and membranous factors that manipulate the tumor environment to facilitate growth and survival. Recent years have provided evidence that small microvesicles that are termed exosomes may play a pivotal role in this process. Exosomes are membrane vesicles with a size of 40-100 nm that are released by both tumor and normal cells and can be found in various body fluids. Tumor-derived exosomes carry functional proteins, mRNAs, and miRNAs and could serve as novel platform for tumor diagnosis and prognosis. However, marker proteins that allow enrichment of tumor-derived exosomes over normal exosomes are less well defined. METHODS: We used Western blot analysis and antibody coupled magnetic beads to characterize CD24 and EpCAM as markers for exosomes. We investigated ovarian carcinoma ascites, pleural effusions and serum of breast carcinoma patients. As non-tumor derived control we used exosomes from ascites of liver cirrhosis patients. RESULTS: Exosomes could be isolated from all body fluids and contained marker proteins as well as miRNAs. We observed that CD24 and EpCAM were selectively present on ascites exosomes of tumor patients and copurified together on anti-EpCAM or anti-CD24 magnetic beads. In breast cancer patients CD24 was present but EpCAM was absent from serum exosomes. Instead, the intact EpCAM ectodomain was recovered in a soluble form. We provide evidence that EpCAM can be cleaved from exosomes via serum metalloproteinase(s). CONCLUSION: Loss of EpCAM on serum exosomes may hamper enrichment by immune-affinity isolation. We suggest that CD24 could be an additional marker for the enrichment of tumor-derived exosomes from blood. (hide)
EV-METRIC
13% (40th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Pleural effusion
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
Protein markers
EV: Annexin1/ CD24/ ADAM10/ HSP70/ EpCAM/ MHC2/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Pleural effusion
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ HSP70/ ADAM10/ Annexin1/ MHC2/ EpCAM/ CD24
ELISA
Antibody details provided?
No
Detected EV-associated proteins
ADAM10/ Annexin1/ MHC2/ EpCAM/ CD24
Characterization: Particle analysis
None
1 - 3 of 3
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV110020
species
Homo sapiens
sample type
Serum
Ascites
Pleural effusion
condition
NAY
NAY
NAY
separation protocol
(d)(U)C
DG
IAF
(d)(U)C
DG
IAF
(d)(U)C
DC
Exp. nr.
2
3
1
EV-METRIC %
63
50
13