Search > Results

You searched for: EV100071 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV100071 1/1 Mus musculus NAY (d)(U)C
Low resolution FACS
Aliotta JM 2010 14%

Study summary

Full title
All authors
Aliotta JM, Pereira M, Johnson KW, de Paz N, Dooner MS, Puente N, Ayala C, Brilliant K, Berz D, Lee D, Ramratnam B, McMillan PN, Hixson DC, Josic D, Quesenberry PJ
Journal
Exp Hematol
Abstract
OBJECTIVE: Microvesicles have been shown to mediate intercellular communication. Previously, we have (show more...)OBJECTIVE: Microvesicles have been shown to mediate intercellular communication. Previously, we have correlated entry of murine lung-derived microvesicles into murine bone marrow cells with expression of pulmonary epithelial cell-specific messenger RNA (mRNA) in these marrow cells. The present studies establish that entry of lung-derived microvesicles into marrow cells is a prerequisite for marrow expression of pulmonary epithelial cell-derived mRNA. MATERIALS AND METHODS: Murine bone marrow cells cocultured with rat lung, but separated from them using a cell-impermeable membrane (0.4-microm pore size), were analyzed using species-specific primers (for rat or mouse). RESULTS: These studies revealed that surfactant B and C mRNA produced by murine marrow cells were of both rat and mouse origin. Similar results were obtained using murine lung cocultured with rat bone marrow cells or when bone marrow cells were analyzed for the presence of species-specific albumin mRNA after coculture with rat or murine liver. These studies show that microvesicles both deliver mRNA to marrow cells and mediate marrow cell transcription of tissue-specific mRNA. The latter likely underlies the longer-term stable change in genetic phenotype that has been observed. We have also observed microRNA in lung-derived microvesicles, and studies with RNase-treated microvesicles indicate that microRNA negatively modulates pulmonary epithelial cell-specific mRNA levels in cocultured marrow cells. In addition, we have also observed tissue-specific expression of brain, heart, and liver mRNA in cocultured marrow cells, suggesting that microvesicle-mediated cellular phenotype change is a universal phenomena. CONCLUSION: These studies suggest that cellular systems are more phenotypically labile than previously considered. (hide)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
microvesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Low resolution FACS
Protein markers
EV:
non-EV:
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Other
Name other separation method
Low resolution FACS
Characterization: Protein analysis
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV100071
species
Mus musculus
sample type
Cell culture
cell type
NAY
condition
NAY
separation protocol
(d)(U)C
Low resolution FACS
Exp. nr.
1
EV-METRIC %
14