Search > Results

You searched for: EV100032 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV100032 1/2 Homo sapiens NAY (d)(U)C
Filtration
IAF
Guescini M 2010 22%

Study summary

Full title
All authors
Guescini M, Genedani S, Stocchi V, Agnati LF
Journal
J Neural Transm
Abstract
Cells can exchange information not only by means of chemical and/or electrical signals, but also via (show more...)Cells can exchange information not only by means of chemical and/or electrical signals, but also via microvesicles released into the intercellular space. The present paper, for the first time, provides evidence that Glioblastoma and Astrocyte cells release microvesicles, which carry mitochondrial DNA (mtDNA). These microvesicles have been characterised as exosomes in view of the presence of some protein markers of exosomes, such as Tsg101, CD9 and Alix. Thus, the important finding has been obtained that bonafide exosomes, constitutively released by Glioblastoma cells and Astrocytes, can carry mtDNA, which can be, therefore, transferred between cells. This datum may help the understanding of some diseases due to mitochondrial alterations. (hide)
EV-METRIC
22% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
IAF
Protein markers
EV: Alix/ TSG101/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Wash: volume per pellet (ml)
13
Filtration steps
0.22µm or 0.2µm
Immunoaffinity capture
Selected surface protein(s)
CD9
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
Alix/ CD9/ TSG101
EV100032 2/2 Rattus norvegicus/rattus NAY (d)(U)C
Filtration
Guescini M 2010 11%

Study summary

Full title
All authors
Guescini M, Genedani S, Stocchi V, Agnati LF
Journal
J Neural Transm
Abstract
Cells can exchange information not only by means of chemical and/or electrical signals, but also via (show more...)Cells can exchange information not only by means of chemical and/or electrical signals, but also via microvesicles released into the intercellular space. The present paper, for the first time, provides evidence that Glioblastoma and Astrocyte cells release microvesicles, which carry mitochondrial DNA (mtDNA). These microvesicles have been characterised as exosomes in view of the presence of some protein markers of exosomes, such as Tsg101, CD9 and Alix. Thus, the important finding has been obtained that bonafide exosomes, constitutively released by Glioblastoma cells and Astrocytes, can carry mtDNA, which can be, therefore, transferred between cells. This datum may help the understanding of some diseases due to mitochondrial alterations. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: Alix/ TSG101
non-EV:
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Rattus norvegicus/rattus
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Wash: volume per pellet (ml)
13
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
Alix/ TSG101
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV100032
species
Homo sapiens
Rattus
norvegicus/rattus
sample type
Cell culture
Cell culture
cell type
NAY
NAY
condition
NAY
NAY
separation protocol
(d)(U)C
Filtration
IAF
(d)(U)C
Filtration
Exp. nr.
1
2
EV-METRIC %
22
11