Search > Results

You searched for: EV100030 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV100030 1/1 Mus musculus NAY (d)(U)C Xie Y 2010 22%

Study summary

Full title
All authors
Xie Y, Bai O, Zhang H, Yuan J, Zong S, Chibbar R, Slattery K, Qureshi M, Wei Y, Deng Y, Xiang J
Journal
J Cell Mol Med
Abstract
Exosomes (EXO) derived from tumour cells have been used to stimulate antitumour immune responses, bu (show more...)Exosomes (EXO) derived from tumour cells have been used to stimulate antitumour immune responses, but only resulting in prophylatic immunity. Tumour-derived heat shock protein 70 (HSP70) molecules are molecular chaperones with a broad repertoire of tumour antigen peptides capable of stimulating dendritic cell (DC) maturation and T-cell immune responses. To enhance EXO-based antitumour immunity, we generated an engineered myeloma cell line J558(HSP) expressing endogenous P1A tumour antigen and transgenic form of membrane-bound HSP70 and heat-shocked J558(HS) expressing cytoplasmic HSP70, and purified EXO(HSP) and EXO(HS) from J558(HSP) and J558(HS) tumour cell culture supernatants by ultracentrifugation. We found that EXO(HSP) were able to more efficiently stimulate maturation of DCs with up-regulation of Ia(b) , CD40, CD80 and inflammatory cytokines than EXO(HS) after overnight incubation of immature bone-marrow-derived DCs (5 × 10? cells) with EXO (100 ?g), respectively. We also i.v. immunized BALB/c mice with EXO (30 ?g/mouse) and assessed P1A-specific T-cell responses after immunization. We demonstrate that EXO(HSP) are able to stimulate type 1 CD4(+) helper T (Th1) cell responses, and more efficient P1A-specific CD8(+) cytotoxic T lymphocyte (CTL) responses and antitumour immunity than EXO(HS) . In addition, we further elucidate that EXO(HSP) -stimulated antitumour immunity is mediated by both P1A-specific CD8(+) CTL and non-P1A-specific natural killer (NK) responses. Therefore, membrane-bound HSP70-expressing tumour cell-released EXO may represent a more effective EXO-based vaccine in induction of antitumour immunity. (hide)
EV-METRIC
22% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: Alix/ HSP70/ LAMP1
non-EV: Cell organelle protein
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ HSP70/ LAMP1
Detected contaminants
Cell organelle protein
ELISA
Antibody details provided?
No
Detected EV-associated proteins
LAMP1
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV100030
species
Mus musculus
sample type
Cell culture
cell type
NAY
condition
NAY
separation protocol
(d)(U)C
Exp. nr.
1
EV-METRIC %
22