Search > Results

You searched for: 2025 (Year of publication)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV250039 1/2 Homo sapiens Stool DG
Filtration
(d)(U)C
SEC (commercial)
UF
Mishra S 2025 50%

Study summary

Full title
All authors
Mishra S, Tejesvi MV, Hekkala J, Turunen J, Kandikanti N, Kaisanlahti A, Suokas M, Leppä S, Vihinen P, Kuitunen H, Sunela K, Koivunen J, Jukkola A, Kalashnikov I, Auvinen P, Kääriäinen OS, Peñate Medina T, Peñate Medina O, Saarnio J, Meriläinen S, Rautio T, Aro R, Häivälä R, Suojanen J, Laine M, Erawijattari PP, Lahti L, Karihtala P, Ruuska TS, Reunanen J
Journal
J Adv Res
Abstract
Gut microbiome-derived nanoparticles, known as bacterial extracellular vesicles (bEVs), have garnere (show more...)Gut microbiome-derived nanoparticles, known as bacterial extracellular vesicles (bEVs), have garnered interest as promising tools for studying the link between the gut microbiome and human health. The diverse composition of bEVs, including their proteins, mRNAs, metabolites, and lipids, makes them useful for investigating diseases such as cancer. However, conventional approaches for studying gut microbiome composition alone may not be accurate in deciphering host-gut microbiome communication. In clinical microbiome research, there is a gap in the knowledge on the role of bEVs in solid tumor patients. (hide)
EV-METRIC
50% (76th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Stool
Sample origin
Patients with solid tumor
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
Filtration
(Differential) (ultra)centrifugation
Size-exclusion chromatography (commercial)
Ultrafiltration
Protein markers
EV: None
non-EV: None
Proteomics
yes
EV density (g/ml)
-
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Stool
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
No
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
10
Sample volume (mL)
0.2
Orientation
Top-down
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
10
Pelleting: speed (g)
100000
Filtration steps
Larger than 0.45 µm/ Between 0.22 and 0.45 µm
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Other
Name other separation method
Size-exclusion chromatography (commercial)
Characterization: Protein analysis
Protein Concentration Method
Not determined
Proteomics database
PRIDE
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
202
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 1.08E+08
EM
EM-type
Transmission-EM
Image type
Wide-field
EV250039 2/2 Homo sapiens Stool DG
Filtration
(d)(U)C
SEC (commercial)
Mishra S 2025 50%

Study summary

Full title
All authors
Mishra S, Tejesvi MV, Hekkala J, Turunen J, Kandikanti N, Kaisanlahti A, Suokas M, Leppä S, Vihinen P, Kuitunen H, Sunela K, Koivunen J, Jukkola A, Kalashnikov I, Auvinen P, Kääriäinen OS, Peñate Medina T, Peñate Medina O, Saarnio J, Meriläinen S, Rautio T, Aro R, Häivälä R, Suojanen J, Laine M, Erawijattari PP, Lahti L, Karihtala P, Ruuska TS, Reunanen J
Journal
J Adv Res
Abstract
Gut microbiome-derived nanoparticles, known as bacterial extracellular vesicles (bEVs), have garnere (show more...)Gut microbiome-derived nanoparticles, known as bacterial extracellular vesicles (bEVs), have garnered interest as promising tools for studying the link between the gut microbiome and human health. The diverse composition of bEVs, including their proteins, mRNAs, metabolites, and lipids, makes them useful for investigating diseases such as cancer. However, conventional approaches for studying gut microbiome composition alone may not be accurate in deciphering host-gut microbiome communication. In clinical microbiome research, there is a gap in the knowledge on the role of bEVs in solid tumor patients. (hide)
EV-METRIC
50% (76th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Stool
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
Filtration
(Differential) (ultra)centrifugation
Size-exclusion chromatography (commercial)
Protein markers
EV: None
non-EV: None
Proteomics
yes
EV density (g/ml)
-
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Stool
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
No
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
10
Sample volume (mL)
0.2
Orientation
Top-down
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
10
Pelleting: speed (g)
100000
Filtration steps
Larger than 0.45 µm/ Between 0.22 and 0.45 µm
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Other
Name other separation method
Size-exclusion chromatography (commercial)
Characterization: Protein analysis
Protein Concentration Method
Not determined
Proteomics database
PRIDE
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
168.9
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 2.52E+08
EM
EM-type
Transmission-EM
Image type
Wide-field
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV250039
species
Homo sapiens
sample type
Stool
condition
Patients
with solid tumor
Control condition
separation protocol
Density gradient/
Filtration/ dUC/ Size-exclusion
chromatography (commercial)/
Ultrafiltration
Density gradient/
Filtration/ dUC/ Size-exclusion
chromatography (commercial)
Exp. nr.
1
2
EV-METRIC %
50
50