Search > Results

You searched for: EV210056 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210056 1/2 Mus musculus WEHI3B DG
(d)(U)C
Gu, Xiaoyu 2015 25%

Study summary

Full title
All authors
Xiaoyu Gu, Ulrike Erb, Markus W Büchler, Margot Zöller
Journal
Int J Cancer
Abstract
Leukemia immunotherapy frequently does not meet expectation, one of the handicaps being tumor exosom (show more...)Leukemia immunotherapy frequently does not meet expectation, one of the handicaps being tumor exosome (TEX)-promoted immunosuppression. We here asked, using the mouse myeloid leukemia WEHI3B and the renal cell carcinoma line RENCA, whether dendritic cell (DC) vaccination suffices to counterregulate TEX-induced immunosuppression and whether TEX could serve as tumor antigen for DC-loading. DC-vaccination significantly prolonged the survival time of WEHI3B-bearing mice, TEX-loaded DC (DC-TEX) being superior to lysate-loaded DC (DC-lys), even an excess of TEX not interfering with immune response induction. The superior response to DC-TEX was accompanied by an increase in WEHI3B-specific CD4+ T cells, evaluated by trogocytosis and proliferation. Similar findings accounted for DC loaded with RENCA TEX. TEX was efficiently taken-up by DC and TEX uptake supported CD11c, MHCII and IL12 upregulation in DC. Importantly, TEX was partly recruited into the MHCII-loading compartment such that TEX presentation time and recovery in T cells significantly exceeded that of tumor-lysate. Thus, TEX did not drive DC into a suppressive phenotype and were a superior antigen due to higher efficacy of TEX-presentation that is supported by prolonged persistence, preferential processing in the MHCII-loading compartment and pronounced trogocytosis by T helper cells. TEX is present in tumor patients' sera. TEX, recovered and enriched from patients' sera, might well provide an optimized, individual-specific antigen source for DC-loading and vaccination. (hide)
EV-METRIC
25% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
Protein markers
EV: CD24/ CD34/ CD90/ CD117/ SCA1/ CD16/32/ CD31/ CD44/ CD9/ CD63/ CD81/ MFGE8/ HSP70/ IL3/ IL6/ IL7/ CCR9/ CXCR3/ CXCR4
non-EV: None
Proteomics
no
EV density (g/ml)
Not specified
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
WEHI3B
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
90
Wash: Rotor Type
Not specified
Wash: speed (g)
100000
Density gradient
Type
Continuous
Lowest density fraction
0.25M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
Not specified
Sample volume (mL)
Not spec
Orientation
Bottom-up
Rotor type
Not specified
Speed (g)
150000
Duration (min)
900
Fraction volume (mL)
Not specified
Fraction processing
Not specified
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry aspecific beads
Antibody details provided?
No
Detected EV-associated proteins
CD24/ CD34/ CD90/ CD117/ SCA1/ CD16/32/ CD31/ CD44/ CD9/ CD63/ CD81/ MFGE8/ HSP70/ IL3/ IL6/ IL7/ CCR9/ CXCR3/ CXCR4
Characterization: Lipid analysis
No
EV210056 2/2 Mus musculus RENCA DG
(d)(U)C
Gu, Xiaoyu 2015 14%

Study summary

Full title
All authors
Xiaoyu Gu, Ulrike Erb, Markus W Büchler, Margot Zöller
Journal
Int J Cancer
Abstract
Leukemia immunotherapy frequently does not meet expectation, one of the handicaps being tumor exosom (show more...)Leukemia immunotherapy frequently does not meet expectation, one of the handicaps being tumor exosome (TEX)-promoted immunosuppression. We here asked, using the mouse myeloid leukemia WEHI3B and the renal cell carcinoma line RENCA, whether dendritic cell (DC) vaccination suffices to counterregulate TEX-induced immunosuppression and whether TEX could serve as tumor antigen for DC-loading. DC-vaccination significantly prolonged the survival time of WEHI3B-bearing mice, TEX-loaded DC (DC-TEX) being superior to lysate-loaded DC (DC-lys), even an excess of TEX not interfering with immune response induction. The superior response to DC-TEX was accompanied by an increase in WEHI3B-specific CD4+ T cells, evaluated by trogocytosis and proliferation. Similar findings accounted for DC loaded with RENCA TEX. TEX was efficiently taken-up by DC and TEX uptake supported CD11c, MHCII and IL12 upregulation in DC. Importantly, TEX was partly recruited into the MHCII-loading compartment such that TEX presentation time and recovery in T cells significantly exceeded that of tumor-lysate. Thus, TEX did not drive DC into a suppressive phenotype and were a superior antigen due to higher efficacy of TEX-presentation that is supported by prolonged persistence, preferential processing in the MHCII-loading compartment and pronounced trogocytosis by T helper cells. TEX is present in tumor patients' sera. TEX, recovered and enriched from patients' sera, might well provide an optimized, individual-specific antigen source for DC-loading and vaccination. (hide)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
Protein markers
EV: None
non-EV: None
Proteomics
no
EV density (g/ml)
Not specified
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
RENCA
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
90
Wash: Rotor Type
Not specified
Wash: speed (g)
100000
Density gradient
Type
Continuous
Lowest density fraction
0.25M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
Not specified
Sample volume (mL)
Not spec
Orientation
Bottom-up
Rotor type
Not specified
Speed (g)
150000
Duration (min)
900
Fraction volume (mL)
Not specified
Fraction processing
Not specified
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV210056
species
Mus musculus
sample type
Cell culture
cell type
WEHI3B
RENCA
condition
Control condition
Control condition
separation protocol
DG
(d)(U)C
DG
(d)(U)C
Exp. nr.
1
2
EV-METRIC %
25
14