Search > Results

You searched for: EV200157 (EV-TRACK ID)

Showing 1 - 10 of 10

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV200157 5/10 Homo sapiens MDA-MB-468 (d)(U)C
SEC (non-commercial)
Polymer-based precipitation
DG
Martínez-Greene, Juan A 2021 89%

Study summary

Full title
All authors
Juan A Martínez-Greene, Karina Hernández-Ortega, Ricardo Quiroz-Baez, Osbaldo Resendis-Antonio, Israel Pichardo-Casas, David A Sinclair, Bogdan Budnik, Alfredo Hidalgo-Miranda, Eileen Uribe-Querol, María Del Pilar Ramos-Godínez, Eduardo Martínez-Martínez
Journal
J Extracell Vesicles
Abstract
The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in (show more...)The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in their composition at a cellular and tissue level. Current isolation methods fail to efficiently separate EV subtypes for proteomic and functional analysis. The aim of this study was to develop a reproducible and scalable isolation workflow to increase the yield and purity of EV preparations. Through a combination of polymer-based precipitation and size exclusion chromatography (Pre-SEC), we analyzed two subsets of EVs based on their CD9, CD63 and CD81 content and elution time. EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot assays. To evaluate differences in protein composition between the early- and late-eluting EV fractions, we performed a quantitative proteomic analysis of MDA-MB-468-derived EVs. We identified 286 exclusive proteins in early-eluting fractions and 148 proteins with a differential concentration between early- and late-eluting fractions. A density gradient analysis further revealed EV heterogeneity within each analyzed subgroup. Through a systems biology approach, we found significant interactions among proteins contained in the EVs which suggest the existence of functional clusters related to specific biological processes. The workflow presented here allows the study of EV subtypes within a single cell type and contributes to standardizing the EV isolation for functional studies. (hide)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Polymer-based precipitation
Density gradient
Protein markers
EV: CD9/ CD63/ CD81/ Alix/ TSG101/ ANXA2/ ANXA5
non-EV: Albumin
Proteomics
yes
EV density (g/ml)
1.08-1.15
Show all info
Study aim
New methodological development/Biomarker/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-468
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
95
Cell count
1.50E+06
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
39
Pelleting: rotor type
TLA-100.3
Pelleting: speed (g)
118000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
10%
Highest density fraction
30%
Total gradient volume, incl. sample (mL)
5
Sample volume (mL)
2.5
Orientation
Bottom-up
Rotor type
SW 55 Ti
Speed (g)
200000
Duration (min)
60
Fraction volume (mL)
0.49
Fraction processing
Centrifugation
Pelleting: volume per fraction
2.8
Pelleting: duration (min)
39
Pelleting: rotor type
TLA-100.3
Pelleting: speed (g)
118000
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Other
Name other separation method
Polymer-based precipitation
EV-subtype
Distinction between multiple subtypes
SEC fraction
Used subtypes
F5-10
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD63/ CD81/ Alix/ TSG101/ ANXA2/ ANXA5
Detected contaminants
Albumin
Proteomics database
Yes: ProteomeXchange
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
148.9
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 4.13E+11
EM
EM-type
Transmission-EM
Image type
Wide-field
EV200157 6/10 Homo sapiens MDA-MB-468 (d)(U)C
SEC (non-commercial)
Polymer-based precipitation
DG
Martínez-Greene, Juan A 2021 89%

Study summary

Full title
All authors
Juan A Martínez-Greene, Karina Hernández-Ortega, Ricardo Quiroz-Baez, Osbaldo Resendis-Antonio, Israel Pichardo-Casas, David A Sinclair, Bogdan Budnik, Alfredo Hidalgo-Miranda, Eileen Uribe-Querol, María Del Pilar Ramos-Godínez, Eduardo Martínez-Martínez
Journal
J Extracell Vesicles
Abstract
The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in (show more...)The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in their composition at a cellular and tissue level. Current isolation methods fail to efficiently separate EV subtypes for proteomic and functional analysis. The aim of this study was to develop a reproducible and scalable isolation workflow to increase the yield and purity of EV preparations. Through a combination of polymer-based precipitation and size exclusion chromatography (Pre-SEC), we analyzed two subsets of EVs based on their CD9, CD63 and CD81 content and elution time. EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot assays. To evaluate differences in protein composition between the early- and late-eluting EV fractions, we performed a quantitative proteomic analysis of MDA-MB-468-derived EVs. We identified 286 exclusive proteins in early-eluting fractions and 148 proteins with a differential concentration between early- and late-eluting fractions. A density gradient analysis further revealed EV heterogeneity within each analyzed subgroup. Through a systems biology approach, we found significant interactions among proteins contained in the EVs which suggest the existence of functional clusters related to specific biological processes. The workflow presented here allows the study of EV subtypes within a single cell type and contributes to standardizing the EV isolation for functional studies. (hide)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Polymer-based precipitation
Density gradient
Protein markers
EV: CD9/ CD63/ CD81/ Alix/ TSG101/ ANXA2/ ANXA5
non-EV: Albumin
Proteomics
yes
EV density (g/ml)
1.08-1.15
Show all info
Study aim
New methodological development/Biomarker/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-468
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
95
Cell count
1.50E+06
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
39
Pelleting: rotor type
TLA-100.3
Pelleting: speed (g)
118000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
10%
Highest density fraction
30%
Total gradient volume, incl. sample (mL)
5
Sample volume (mL)
2.5
Orientation
Bottom-up
Rotor type
SW 55 Ti
Speed (g)
200000
Duration (min)
60
Fraction volume (mL)
0.49
Fraction processing
Centrifugation
Pelleting: volume per fraction
2.8
Pelleting: duration (min)
39
Pelleting: rotor type
TLA-100.3
Pelleting: speed (g)
118000
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Other
Name other separation method
Polymer-based precipitation
EV-subtype
Distinction between multiple subtypes
SEC fraction
Used subtypes
F11-16
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD63/ CD81/ ANXA2/ ANXA5
Not detected EV-associated proteins
Alix/ TSG101
Detected contaminants
Albumin
Proteomics database
Yes: ProteomeXchange
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
124
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 4.29E+11
EM
EM-type
Transmission-EM
Image type
Wide-field
EV200157 7/10 Homo sapiens MDA-MB-468 (d)(U)C
SEC (non-commercial)
Polymer-based precipitation
Martínez-Greene, Juan A 2021 67%

Study summary

Full title
All authors
Juan A Martínez-Greene, Karina Hernández-Ortega, Ricardo Quiroz-Baez, Osbaldo Resendis-Antonio, Israel Pichardo-Casas, David A Sinclair, Bogdan Budnik, Alfredo Hidalgo-Miranda, Eileen Uribe-Querol, María Del Pilar Ramos-Godínez, Eduardo Martínez-Martínez
Journal
J Extracell Vesicles
Abstract
The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in (show more...)The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in their composition at a cellular and tissue level. Current isolation methods fail to efficiently separate EV subtypes for proteomic and functional analysis. The aim of this study was to develop a reproducible and scalable isolation workflow to increase the yield and purity of EV preparations. Through a combination of polymer-based precipitation and size exclusion chromatography (Pre-SEC), we analyzed two subsets of EVs based on their CD9, CD63 and CD81 content and elution time. EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot assays. To evaluate differences in protein composition between the early- and late-eluting EV fractions, we performed a quantitative proteomic analysis of MDA-MB-468-derived EVs. We identified 286 exclusive proteins in early-eluting fractions and 148 proteins with a differential concentration between early- and late-eluting fractions. A density gradient analysis further revealed EV heterogeneity within each analyzed subgroup. Through a systems biology approach, we found significant interactions among proteins contained in the EVs which suggest the existence of functional clusters related to specific biological processes. The workflow presented here allows the study of EV subtypes within a single cell type and contributes to standardizing the EV isolation for functional studies. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Polymer-based precipitation
Protein markers
EV: CD9/ CD63/ CD81/ Alix/ TSG101/ ANXA2/ ANXA5
non-EV: Albumin
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-468
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
95
Cell count
1.50E+06
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
39
Pelleting: rotor type
TLA-100.3
Pelleting: speed (g)
118000
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Other
Name other separation method
Polymer-based precipitation
EV-subtype
Distinction between multiple subtypes
SEC fraction
Used subtypes
F5-10
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD63/ CD81/ Alix/ TSG101/ ANXA2/ ANXA5
Detected contaminants
Albumin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
138
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 4.91E+11
EM
EM-type
Transmission-EM
Image type
Wide-field
EV200157 8/10 Homo sapiens MDA-MB-468 (d)(U)C
SEC (non-commercial)
Polymer-based precipitation
DG
Martínez-Greene, Juan A 2021 67%

Study summary

Full title
All authors
Juan A Martínez-Greene, Karina Hernández-Ortega, Ricardo Quiroz-Baez, Osbaldo Resendis-Antonio, Israel Pichardo-Casas, David A Sinclair, Bogdan Budnik, Alfredo Hidalgo-Miranda, Eileen Uribe-Querol, María Del Pilar Ramos-Godínez, Eduardo Martínez-Martínez
Journal
J Extracell Vesicles
Abstract
The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in (show more...)The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in their composition at a cellular and tissue level. Current isolation methods fail to efficiently separate EV subtypes for proteomic and functional analysis. The aim of this study was to develop a reproducible and scalable isolation workflow to increase the yield and purity of EV preparations. Through a combination of polymer-based precipitation and size exclusion chromatography (Pre-SEC), we analyzed two subsets of EVs based on their CD9, CD63 and CD81 content and elution time. EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot assays. To evaluate differences in protein composition between the early- and late-eluting EV fractions, we performed a quantitative proteomic analysis of MDA-MB-468-derived EVs. We identified 286 exclusive proteins in early-eluting fractions and 148 proteins with a differential concentration between early- and late-eluting fractions. A density gradient analysis further revealed EV heterogeneity within each analyzed subgroup. Through a systems biology approach, we found significant interactions among proteins contained in the EVs which suggest the existence of functional clusters related to specific biological processes. The workflow presented here allows the study of EV subtypes within a single cell type and contributes to standardizing the EV isolation for functional studies. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Polymer-based precipitation
Density gradient
Protein markers
EV: CD9/ CD63/ CD81/ Alix/ TSG101/ ANXA2/ ANXA5
non-EV: Albumin
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-468
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
95
Cell count
1.50E+06
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
39
Pelleting: rotor type
TLA-100.3
Pelleting: speed (g)
118000
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Other
Name other separation method
Polymer-based precipitation
EV-subtype
Distinction between multiple subtypes
SEC fraction
Used subtypes
F11-16
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD63/ CD81
Not detected EV-associated proteins
Alix/ TSG101/ ANXA2/ ANXA5
Detected contaminants
Albumin
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
129
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 5.19E+10
EM
EM-type
Transmission-EM
Image type
Wide-field
EV200157 9/10 Homo sapiens gingival primary fibroblasts (d)(U)C
SEC (non-commercial)
Polymer-based precipitation
Martínez-Greene, Juan A 2021 67%

Study summary

Full title
All authors
Juan A Martínez-Greene, Karina Hernández-Ortega, Ricardo Quiroz-Baez, Osbaldo Resendis-Antonio, Israel Pichardo-Casas, David A Sinclair, Bogdan Budnik, Alfredo Hidalgo-Miranda, Eileen Uribe-Querol, María Del Pilar Ramos-Godínez, Eduardo Martínez-Martínez
Journal
J Extracell Vesicles
Abstract
The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in (show more...)The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in their composition at a cellular and tissue level. Current isolation methods fail to efficiently separate EV subtypes for proteomic and functional analysis. The aim of this study was to develop a reproducible and scalable isolation workflow to increase the yield and purity of EV preparations. Through a combination of polymer-based precipitation and size exclusion chromatography (Pre-SEC), we analyzed two subsets of EVs based on their CD9, CD63 and CD81 content and elution time. EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot assays. To evaluate differences in protein composition between the early- and late-eluting EV fractions, we performed a quantitative proteomic analysis of MDA-MB-468-derived EVs. We identified 286 exclusive proteins in early-eluting fractions and 148 proteins with a differential concentration between early- and late-eluting fractions. A density gradient analysis further revealed EV heterogeneity within each analyzed subgroup. Through a systems biology approach, we found significant interactions among proteins contained in the EVs which suggest the existence of functional clusters related to specific biological processes. The workflow presented here allows the study of EV subtypes within a single cell type and contributes to standardizing the EV isolation for functional studies. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Polymer-based precipitation
Protein markers
EV: CD9/ CD63/ CD81/ Alix/ TSG101/ ANXA2/ ANXA5
non-EV: Albumin
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
gingival primary fibroblasts
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
95
Cell count
1.50E+06
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
39
Pelleting: rotor type
TLA-100.3
Pelleting: speed (g)
118000
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Other
Name other separation method
Polymer-based precipitation
EV-subtype
Distinction between multiple subtypes
SEC fraction
Used subtypes
F5-10
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD63/ CD81/ ANXA2/ ANXA5
Not detected EV-associated proteins
Alix/ TSG101
Detected contaminants
Albumin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
149
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 2.89E+11
EM
EM-type
Transmission-EM
Image type
Wide-field
EV200157 10/10 Homo sapiens gingival primary fibroblasts (d)(U)C
SEC (non-commercial)
Polymer-based precipitation
DG
Martínez-Greene, Juan A 2021 67%

Study summary

Full title
All authors
Juan A Martínez-Greene, Karina Hernández-Ortega, Ricardo Quiroz-Baez, Osbaldo Resendis-Antonio, Israel Pichardo-Casas, David A Sinclair, Bogdan Budnik, Alfredo Hidalgo-Miranda, Eileen Uribe-Querol, María Del Pilar Ramos-Godínez, Eduardo Martínez-Martínez
Journal
J Extracell Vesicles
Abstract
The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in (show more...)The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in their composition at a cellular and tissue level. Current isolation methods fail to efficiently separate EV subtypes for proteomic and functional analysis. The aim of this study was to develop a reproducible and scalable isolation workflow to increase the yield and purity of EV preparations. Through a combination of polymer-based precipitation and size exclusion chromatography (Pre-SEC), we analyzed two subsets of EVs based on their CD9, CD63 and CD81 content and elution time. EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot assays. To evaluate differences in protein composition between the early- and late-eluting EV fractions, we performed a quantitative proteomic analysis of MDA-MB-468-derived EVs. We identified 286 exclusive proteins in early-eluting fractions and 148 proteins with a differential concentration between early- and late-eluting fractions. A density gradient analysis further revealed EV heterogeneity within each analyzed subgroup. Through a systems biology approach, we found significant interactions among proteins contained in the EVs which suggest the existence of functional clusters related to specific biological processes. The workflow presented here allows the study of EV subtypes within a single cell type and contributes to standardizing the EV isolation for functional studies. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Polymer-based precipitation
Density gradient
Protein markers
EV: CD9/ CD63/ CD81/ Alix/ TSG101/ ANXA2/ ANXA5
non-EV: Albumin
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
gingival primary fibroblasts
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
95
Cell count
1.50E+06
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
39
Pelleting: rotor type
TLA-100.3
Pelleting: speed (g)
118000
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Other
Name other separation method
Polymer-based precipitation
EV-subtype
Distinction between multiple subtypes
SEC fraction
Used subtypes
F11-16
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD63/ CD81
Not detected EV-associated proteins
Alix/ TSG101/ ANXA2/ ANXA5
Detected contaminants
Albumin
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
158.5
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 4.68E+10
EM
EM-type
Transmission-EM
Image type
Wide-field
EV200157 4/10 Homo sapiens MDA-MB-468 Polymer-based precipitation
SEC (non-commercial)
UF
Martínez-Greene, Juan A 2021 63%

Study summary

Full title
All authors
Juan A Martínez-Greene, Karina Hernández-Ortega, Ricardo Quiroz-Baez, Osbaldo Resendis-Antonio, Israel Pichardo-Casas, David A Sinclair, Bogdan Budnik, Alfredo Hidalgo-Miranda, Eileen Uribe-Querol, María Del Pilar Ramos-Godínez, Eduardo Martínez-Martínez
Journal
J Extracell Vesicles
Abstract
The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in (show more...)The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in their composition at a cellular and tissue level. Current isolation methods fail to efficiently separate EV subtypes for proteomic and functional analysis. The aim of this study was to develop a reproducible and scalable isolation workflow to increase the yield and purity of EV preparations. Through a combination of polymer-based precipitation and size exclusion chromatography (Pre-SEC), we analyzed two subsets of EVs based on their CD9, CD63 and CD81 content and elution time. EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot assays. To evaluate differences in protein composition between the early- and late-eluting EV fractions, we performed a quantitative proteomic analysis of MDA-MB-468-derived EVs. We identified 286 exclusive proteins in early-eluting fractions and 148 proteins with a differential concentration between early- and late-eluting fractions. A density gradient analysis further revealed EV heterogeneity within each analyzed subgroup. Through a systems biology approach, we found significant interactions among proteins contained in the EVs which suggest the existence of functional clusters related to specific biological processes. The workflow presented here allows the study of EV subtypes within a single cell type and contributes to standardizing the EV isolation for functional studies. (hide)
EV-METRIC
63% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Polymer-based precipitation
Size-exclusion chromatography (non-commercial)
Ultrafiltration
Protein markers
EV: CD9/ CD81/ ANXA2/ TSG101
non-EV: Calnexin/ Albumin
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-468
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
95
Cell count
1.50E+06
Separation Method
Ultra filtration
Cut-off size (kDa)
3
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Other
Name other separation method
Polymer-based precipitation
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD81/ ANXA2/ TSG101
Detected contaminants
Albumin
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
204.17
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 4.68E+11
EM
EM-type
Transmission-EM
Image type
Wide-field
EV200157 1/10 Homo sapiens MDA-MB-468 (d)(U)C Martínez-Greene, Juan A 2021 56%

Study summary

Full title
All authors
Juan A Martínez-Greene, Karina Hernández-Ortega, Ricardo Quiroz-Baez, Osbaldo Resendis-Antonio, Israel Pichardo-Casas, David A Sinclair, Bogdan Budnik, Alfredo Hidalgo-Miranda, Eileen Uribe-Querol, María Del Pilar Ramos-Godínez, Eduardo Martínez-Martínez
Journal
J Extracell Vesicles
Abstract
The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in (show more...)The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in their composition at a cellular and tissue level. Current isolation methods fail to efficiently separate EV subtypes for proteomic and functional analysis. The aim of this study was to develop a reproducible and scalable isolation workflow to increase the yield and purity of EV preparations. Through a combination of polymer-based precipitation and size exclusion chromatography (Pre-SEC), we analyzed two subsets of EVs based on their CD9, CD63 and CD81 content and elution time. EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot assays. To evaluate differences in protein composition between the early- and late-eluting EV fractions, we performed a quantitative proteomic analysis of MDA-MB-468-derived EVs. We identified 286 exclusive proteins in early-eluting fractions and 148 proteins with a differential concentration between early- and late-eluting fractions. A density gradient analysis further revealed EV heterogeneity within each analyzed subgroup. Through a systems biology approach, we found significant interactions among proteins contained in the EVs which suggest the existence of functional clusters related to specific biological processes. The workflow presented here allows the study of EV subtypes within a single cell type and contributes to standardizing the EV isolation for functional studies. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD9/ CD81/ ANXA2/ TSG101
non-EV: Calnexin/ Albumin
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-468
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
95
Cell count
1.50E+06
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
TLA-100.3
Pelleting: speed (g)
118000
Wash: volume per pellet (ml)
2.8
Wash: time (min)
39
Wash: Rotor Type
TLA-100.3
Wash: speed (g)
118000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD81/ ANXA2/ TSG101
Detected contaminants
Albumin
Not detected contaminants
Calnexin
Proteomics database
Yes:
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV200157 2/10 Homo sapiens MDA-MB-468 Polymer-based precipitation Martínez-Greene, Juan A 2021 50%

Study summary

Full title
All authors
Juan A Martínez-Greene, Karina Hernández-Ortega, Ricardo Quiroz-Baez, Osbaldo Resendis-Antonio, Israel Pichardo-Casas, David A Sinclair, Bogdan Budnik, Alfredo Hidalgo-Miranda, Eileen Uribe-Querol, María Del Pilar Ramos-Godínez, Eduardo Martínez-Martínez
Journal
J Extracell Vesicles
Abstract
The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in (show more...)The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in their composition at a cellular and tissue level. Current isolation methods fail to efficiently separate EV subtypes for proteomic and functional analysis. The aim of this study was to develop a reproducible and scalable isolation workflow to increase the yield and purity of EV preparations. Through a combination of polymer-based precipitation and size exclusion chromatography (Pre-SEC), we analyzed two subsets of EVs based on their CD9, CD63 and CD81 content and elution time. EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot assays. To evaluate differences in protein composition between the early- and late-eluting EV fractions, we performed a quantitative proteomic analysis of MDA-MB-468-derived EVs. We identified 286 exclusive proteins in early-eluting fractions and 148 proteins with a differential concentration between early- and late-eluting fractions. A density gradient analysis further revealed EV heterogeneity within each analyzed subgroup. Through a systems biology approach, we found significant interactions among proteins contained in the EVs which suggest the existence of functional clusters related to specific biological processes. The workflow presented here allows the study of EV subtypes within a single cell type and contributes to standardizing the EV isolation for functional studies. (hide)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Polymer-based precipitation
Protein markers
EV: CD9/ CD81/ ANXA2/ TSG101
non-EV: Calnexin/ Albumin
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-468
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
95
Cell count
1.50E+06
Separation Method
Other
Name other separation method
Polymer-based precipitation
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD81/ ANXA2
Not detected EV-associated proteins
TSG101
Detected contaminants
Albumin
Not detected contaminants
Calnexin
Proteomics database
Yes:
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV200157 3/10 Homo sapiens MDA-MB-468 SEC (non-commercial)
UF
Martínez-Greene, Juan A 2021 50%

Study summary

Full title
All authors
Juan A Martínez-Greene, Karina Hernández-Ortega, Ricardo Quiroz-Baez, Osbaldo Resendis-Antonio, Israel Pichardo-Casas, David A Sinclair, Bogdan Budnik, Alfredo Hidalgo-Miranda, Eileen Uribe-Querol, María Del Pilar Ramos-Godínez, Eduardo Martínez-Martínez
Journal
J Extracell Vesicles
Abstract
The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in (show more...)The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in their composition at a cellular and tissue level. Current isolation methods fail to efficiently separate EV subtypes for proteomic and functional analysis. The aim of this study was to develop a reproducible and scalable isolation workflow to increase the yield and purity of EV preparations. Through a combination of polymer-based precipitation and size exclusion chromatography (Pre-SEC), we analyzed two subsets of EVs based on their CD9, CD63 and CD81 content and elution time. EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot assays. To evaluate differences in protein composition between the early- and late-eluting EV fractions, we performed a quantitative proteomic analysis of MDA-MB-468-derived EVs. We identified 286 exclusive proteins in early-eluting fractions and 148 proteins with a differential concentration between early- and late-eluting fractions. A density gradient analysis further revealed EV heterogeneity within each analyzed subgroup. Through a systems biology approach, we found significant interactions among proteins contained in the EVs which suggest the existence of functional clusters related to specific biological processes. The workflow presented here allows the study of EV subtypes within a single cell type and contributes to standardizing the EV isolation for functional studies. (hide)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Size-exclusion chromatography (non-commercial)
Ultrafiltration
Protein markers
EV: CD9/ CD81/ ANXA2/ TSG101
non-EV: Calnexin/ Albumin
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-468
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
95
Cell count
1.50E+06
Separation Method
Ultra filtration
Cut-off size (kDa)
3
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD81/ ANXA2/ TSG101
Detected contaminants
Albumin
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
1 - 10 of 10
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV200157
species
Homo
sapiens
sample type
Cell
culture
cell type
MDA-MB-468
MDA-MB-468
MDA-MB-468
MDA-MB-468
gingival
primary
fibroblasts
gingival
primary
fibroblasts
MDA-MB-468
MDA-MB-468
MDA-MB-468
MDA-MB-468
condition
Control
condition
Control
condition
Control
condition
Control
condition
Control
condition
Control
condition
Control
condition
Control
condition
Control
condition
Control
condition
separation protocol
dUC
Size-exclusion
chromatography
(non-commercial)
Polymer-based
precipitation
Density
gradient
dUC
Size-exclusion
chromatography
(non-commercial)
Polymer-based
precipitation
Density
gradient
dUC
Size-exclusion
chromatography
(non-commercial)
Polymer-based
precipitation
dUC
Size-exclusion
chromatography
(non-commercial)
Polymer-based
precipitation
Density
gradient
dUC
Size-exclusion
chromatography
(non-commercial)
Polymer-based
precipitation
dUC
Size-exclusion
chromatography
(non-commercial)
Polymer-based
precipitation
Density
gradient
Polymer-based
precipitation
Size-exclusion
chromatography
(non-commercial)
Ultrafiltration
dUC
Polymer-based
precipitation
Size-exclusion
chromatography
(non-commercial)
Ultrafiltration
EV subtype
F5-10
F11-16
F5-10
F11-16
F5-10
F11-16
NA
NA
NA
NA
Exp. nr.
5
6
7
8
9
10
4
1
2
3
EV-METRIC %
89
89
67
67
67
67
63
56
50
50