Search > Results

You searched for: EV200153 (EV-TRACK ID)

Showing 1 - 6 of 6

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV200153 1/6 Homo sapiens HTR-8/SVneo DG
(d)(U)C
Filtration
Grace Truong 2017 56%

Study summary

Full title
All authors
Grace Truong, Dominic Guanzon, Vyjayanthi Kinhal, Omar Elfeky, Andrew Lai, Sherri Longo, Zarin Nuzhat, Carlos Palma, Katherin Scholz-Romero, Ramkumar Menon, Ben W Mol, Gregory E Rice, Carlos Salomon
Journal
PLoS One
Abstract
Our understanding of how cells communicate has undergone a paradigm shift since the recent recogniti (show more...)Our understanding of how cells communicate has undergone a paradigm shift since the recent recognition of the role of exosomes in intercellular signaling. In this study, we investigated whether oxygen tension alters the exosome release and miRNA profile from extravillous trophoblast (EVT) cells, modifying their bioactivity on endothelial cells (EC). Furthermore, we have established the exosomal miRNA profile at early gestation in women who develop pre-eclampsia (PE) and spontaneous preterm birth (SPTB). HTR-8/SVneo cells were used as an EVT model. The effect of oxygen tension (i.e. 8% and 1% oxygen) on exosome release was quantified using nanocrystals (Qdot®) coupled to CD63 by fluorescence NTA. A real-time, live-cell imaging system (Incucyte™) was used to establish the effect of exosomes on EC. Plasma samples were obtained at early gestation (<18 weeks) and classified according to pregnancy outcomes. An Illumina TrueSeq Small RNA kit was used to construct a small RNA library from exosomal RNA obtained from EVT and plasma samples. The number of exosomes was significantly higher in EVT cultured under 1% compared to 8% oxygen. In total, 741 miRNA were identified in exosomes from EVT. Bioinformatic analysis revealed that these miRNA were associated with cell migration and cytokine production. Interestingly, exosomes isolated from EVT cultured at 8% oxygen increased EC migration, whilst exosomes cultured at 1% oxygen decreased EC migration. These changes were inversely proportional to TNF-α released from EC. Finally, we have identified a set of unique miRNAs in exosomes from EVT cultured at 1% oxygen and exosomes isolated from the circulation of mothers at early gestation, who later developed PE and SPTB. We suggest that aberrant exosomal signalling by placental cells is a common aetiological factor in pregnancy complications characterised by incomplete SpA remodeling and is therefore a clinically relevant biomarker of pregnancy complications. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
8% oxygen
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: TSG101/ CD63
non-EV: None
Proteomics
no
EV density (g/ml)
1.13-1.19
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HTR-8/SVneo
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Cell count
6E8
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Surespin 630/36
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
14.5mL
Sample volume (mL)
0.5mL
Orientation
Top-down
Rotor type
Not specified
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
Not specified
Fraction processing
Centrifugation
Pelleting: volume per fraction
Not spec
Pelleting: duration (min)
120
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Detected EV-associated proteins
TSG101
Fluorescent NTA
Relevant measurements variables specified?
NA
Antibody details provided?
No
Detected EV-associated proteins
CD63
Characterization: RNA analysis
RNA analysis
Type
RNA sequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
108+/-15
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
Around 100nm
EV200153 2/6 Homo sapiens HTR-8/SVneo DG
(d)(U)C
Filtration
Grace Truong 2017 45%

Study summary

Full title
All authors
Grace Truong, Dominic Guanzon, Vyjayanthi Kinhal, Omar Elfeky, Andrew Lai, Sherri Longo, Zarin Nuzhat, Carlos Palma, Katherin Scholz-Romero, Ramkumar Menon, Ben W Mol, Gregory E Rice, Carlos Salomon
Journal
PLoS One
Abstract
Our understanding of how cells communicate has undergone a paradigm shift since the recent recogniti (show more...)Our understanding of how cells communicate has undergone a paradigm shift since the recent recognition of the role of exosomes in intercellular signaling. In this study, we investigated whether oxygen tension alters the exosome release and miRNA profile from extravillous trophoblast (EVT) cells, modifying their bioactivity on endothelial cells (EC). Furthermore, we have established the exosomal miRNA profile at early gestation in women who develop pre-eclampsia (PE) and spontaneous preterm birth (SPTB). HTR-8/SVneo cells were used as an EVT model. The effect of oxygen tension (i.e. 8% and 1% oxygen) on exosome release was quantified using nanocrystals (Qdot®) coupled to CD63 by fluorescence NTA. A real-time, live-cell imaging system (Incucyte™) was used to establish the effect of exosomes on EC. Plasma samples were obtained at early gestation (<18 weeks) and classified according to pregnancy outcomes. An Illumina TrueSeq Small RNA kit was used to construct a small RNA library from exosomal RNA obtained from EVT and plasma samples. The number of exosomes was significantly higher in EVT cultured under 1% compared to 8% oxygen. In total, 741 miRNA were identified in exosomes from EVT. Bioinformatic analysis revealed that these miRNA were associated with cell migration and cytokine production. Interestingly, exosomes isolated from EVT cultured at 8% oxygen increased EC migration, whilst exosomes cultured at 1% oxygen decreased EC migration. These changes were inversely proportional to TNF-α released from EC. Finally, we have identified a set of unique miRNAs in exosomes from EVT cultured at 1% oxygen and exosomes isolated from the circulation of mothers at early gestation, who later developed PE and SPTB. We suggest that aberrant exosomal signalling by placental cells is a common aetiological factor in pregnancy complications characterised by incomplete SpA remodeling and is therefore a clinically relevant biomarker of pregnancy complications. (hide)
EV-METRIC
45% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
1% oxygen
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: CD63
non-EV: None
Proteomics
no
EV density (g/ml)
1.13-1.19
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HTR-8/SVneo
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Cell count
6E8
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Surespin 630/36
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
14.5mL
Sample volume (mL)
0.5mL
Orientation
Top-down
Rotor type
Not specified
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
Not specified
Fraction processing
Centrifugation
Pelleting: volume per fraction
Not spec
Pelleting: duration (min)
120
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Fluorescent NTA
Relevant measurements variables specified?
NA
Antibody details provided?
No
Detected EV-associated proteins
CD63
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
108+/-15
EV concentration
Yes
EV200153 3/6 Homo sapiens HUVEC DG
(d)(U)C
Filtration
Grace Truong 2017 34%

Study summary

Full title
All authors
Grace Truong, Dominic Guanzon, Vyjayanthi Kinhal, Omar Elfeky, Andrew Lai, Sherri Longo, Zarin Nuzhat, Carlos Palma, Katherin Scholz-Romero, Ramkumar Menon, Ben W Mol, Gregory E Rice, Carlos Salomon
Journal
PLoS One
Abstract
Our understanding of how cells communicate has undergone a paradigm shift since the recent recogniti (show more...)Our understanding of how cells communicate has undergone a paradigm shift since the recent recognition of the role of exosomes in intercellular signaling. In this study, we investigated whether oxygen tension alters the exosome release and miRNA profile from extravillous trophoblast (EVT) cells, modifying their bioactivity on endothelial cells (EC). Furthermore, we have established the exosomal miRNA profile at early gestation in women who develop pre-eclampsia (PE) and spontaneous preterm birth (SPTB). HTR-8/SVneo cells were used as an EVT model. The effect of oxygen tension (i.e. 8% and 1% oxygen) on exosome release was quantified using nanocrystals (Qdot®) coupled to CD63 by fluorescence NTA. A real-time, live-cell imaging system (Incucyte™) was used to establish the effect of exosomes on EC. Plasma samples were obtained at early gestation (<18 weeks) and classified according to pregnancy outcomes. An Illumina TrueSeq Small RNA kit was used to construct a small RNA library from exosomal RNA obtained from EVT and plasma samples. The number of exosomes was significantly higher in EVT cultured under 1% compared to 8% oxygen. In total, 741 miRNA were identified in exosomes from EVT. Bioinformatic analysis revealed that these miRNA were associated with cell migration and cytokine production. Interestingly, exosomes isolated from EVT cultured at 8% oxygen increased EC migration, whilst exosomes cultured at 1% oxygen decreased EC migration. These changes were inversely proportional to TNF-α released from EC. Finally, we have identified a set of unique miRNAs in exosomes from EVT cultured at 1% oxygen and exosomes isolated from the circulation of mothers at early gestation, who later developed PE and SPTB. We suggest that aberrant exosomal signalling by placental cells is a common aetiological factor in pregnancy complications characterised by incomplete SpA remodeling and is therefore a clinically relevant biomarker of pregnancy complications. (hide)
EV-METRIC
34% (78th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
HTR-8/SVneo EV treatment
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: TNF-alpha
non-EV: None
Proteomics
no
EV density (g/ml)
1.13-1.19
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HUVEC
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Surespin 630/36
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
14.5mL
Sample volume (mL)
0.5mL
Orientation
Top-down
Rotor type
Not specified
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
Not specified
Fraction processing
Centrifugation
Pelleting: volume per fraction
Not spec
Pelleting: duration (min)
120
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
ELISA
Antibody details provided?
No
Detected EV-associated proteins
TNF-alpha
EV200153 4/6 Homo sapiens Blood plasma DG
(d)(U)C
Filtration
Grace Truong 2017 34%

Study summary

Full title
All authors
Grace Truong, Dominic Guanzon, Vyjayanthi Kinhal, Omar Elfeky, Andrew Lai, Sherri Longo, Zarin Nuzhat, Carlos Palma, Katherin Scholz-Romero, Ramkumar Menon, Ben W Mol, Gregory E Rice, Carlos Salomon
Journal
PLoS One
Abstract
Our understanding of how cells communicate has undergone a paradigm shift since the recent recogniti (show more...)Our understanding of how cells communicate has undergone a paradigm shift since the recent recognition of the role of exosomes in intercellular signaling. In this study, we investigated whether oxygen tension alters the exosome release and miRNA profile from extravillous trophoblast (EVT) cells, modifying their bioactivity on endothelial cells (EC). Furthermore, we have established the exosomal miRNA profile at early gestation in women who develop pre-eclampsia (PE) and spontaneous preterm birth (SPTB). HTR-8/SVneo cells were used as an EVT model. The effect of oxygen tension (i.e. 8% and 1% oxygen) on exosome release was quantified using nanocrystals (Qdot®) coupled to CD63 by fluorescence NTA. A real-time, live-cell imaging system (Incucyte™) was used to establish the effect of exosomes on EC. Plasma samples were obtained at early gestation (<18 weeks) and classified according to pregnancy outcomes. An Illumina TrueSeq Small RNA kit was used to construct a small RNA library from exosomal RNA obtained from EVT and plasma samples. The number of exosomes was significantly higher in EVT cultured under 1% compared to 8% oxygen. In total, 741 miRNA were identified in exosomes from EVT. Bioinformatic analysis revealed that these miRNA were associated with cell migration and cytokine production. Interestingly, exosomes isolated from EVT cultured at 8% oxygen increased EC migration, whilst exosomes cultured at 1% oxygen decreased EC migration. These changes were inversely proportional to TNF-α released from EC. Finally, we have identified a set of unique miRNAs in exosomes from EVT cultured at 1% oxygen and exosomes isolated from the circulation of mothers at early gestation, who later developed PE and SPTB. We suggest that aberrant exosomal signalling by placental cells is a common aetiological factor in pregnancy complications characterised by incomplete SpA remodeling and is therefore a clinically relevant biomarker of pregnancy complications. (hide)
EV-METRIC
34% (69th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Healthy pregnant
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: HLA-G
non-EV: None
Proteomics
no
EV density (g/ml)
1.13-1.19
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Surespin 630/36
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
14.5mL
Sample volume (mL)
0.5mL
Orientation
Top-down
Rotor type
Not specified
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
Not specified
Fraction processing
Centrifugation
Pelleting: volume per fraction
Not spec
Pelleting: duration (min)
120
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Detected EV-associated proteins
HLA-G
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean +/- SEM;Other
Reported size (nm)
105+/-15
EV concentration
Yes
EV200153 5/6 Homo sapiens Blood plasma DG
(d)(U)C
Filtration
Grace Truong 2017 34%

Study summary

Full title
All authors
Grace Truong, Dominic Guanzon, Vyjayanthi Kinhal, Omar Elfeky, Andrew Lai, Sherri Longo, Zarin Nuzhat, Carlos Palma, Katherin Scholz-Romero, Ramkumar Menon, Ben W Mol, Gregory E Rice, Carlos Salomon
Journal
PLoS One
Abstract
Our understanding of how cells communicate has undergone a paradigm shift since the recent recogniti (show more...)Our understanding of how cells communicate has undergone a paradigm shift since the recent recognition of the role of exosomes in intercellular signaling. In this study, we investigated whether oxygen tension alters the exosome release and miRNA profile from extravillous trophoblast (EVT) cells, modifying their bioactivity on endothelial cells (EC). Furthermore, we have established the exosomal miRNA profile at early gestation in women who develop pre-eclampsia (PE) and spontaneous preterm birth (SPTB). HTR-8/SVneo cells were used as an EVT model. The effect of oxygen tension (i.e. 8% and 1% oxygen) on exosome release was quantified using nanocrystals (Qdot®) coupled to CD63 by fluorescence NTA. A real-time, live-cell imaging system (Incucyte™) was used to establish the effect of exosomes on EC. Plasma samples were obtained at early gestation (<18 weeks) and classified according to pregnancy outcomes. An Illumina TrueSeq Small RNA kit was used to construct a small RNA library from exosomal RNA obtained from EVT and plasma samples. The number of exosomes was significantly higher in EVT cultured under 1% compared to 8% oxygen. In total, 741 miRNA were identified in exosomes from EVT. Bioinformatic analysis revealed that these miRNA were associated with cell migration and cytokine production. Interestingly, exosomes isolated from EVT cultured at 8% oxygen increased EC migration, whilst exosomes cultured at 1% oxygen decreased EC migration. These changes were inversely proportional to TNF-α released from EC. Finally, we have identified a set of unique miRNAs in exosomes from EVT cultured at 1% oxygen and exosomes isolated from the circulation of mothers at early gestation, who later developed PE and SPTB. We suggest that aberrant exosomal signalling by placental cells is a common aetiological factor in pregnancy complications characterised by incomplete SpA remodeling and is therefore a clinically relevant biomarker of pregnancy complications. (hide)
EV-METRIC
34% (69th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Pregnant; Pre-eclampsia
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: HLA-G
non-EV: None
Proteomics
no
EV density (g/ml)
1.13-1.19
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Surespin 630/36
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
14.5mL
Sample volume (mL)
0.5mL
Orientation
Top-down
Rotor type
Not specified
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
Not specified
Fraction processing
Centrifugation
Pelleting: volume per fraction
Not spec
Pelleting: duration (min)
120
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Detected EV-associated proteins
HLA-G
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean +/- SEM;Other
Reported size (nm)
95 +/- 25
EV concentration
Yes
EV200153 6/6 Homo sapiens Blood plasma DG
(d)(U)C
Filtration
Grace Truong 2017 34%

Study summary

Full title
All authors
Grace Truong, Dominic Guanzon, Vyjayanthi Kinhal, Omar Elfeky, Andrew Lai, Sherri Longo, Zarin Nuzhat, Carlos Palma, Katherin Scholz-Romero, Ramkumar Menon, Ben W Mol, Gregory E Rice, Carlos Salomon
Journal
PLoS One
Abstract
Our understanding of how cells communicate has undergone a paradigm shift since the recent recogniti (show more...)Our understanding of how cells communicate has undergone a paradigm shift since the recent recognition of the role of exosomes in intercellular signaling. In this study, we investigated whether oxygen tension alters the exosome release and miRNA profile from extravillous trophoblast (EVT) cells, modifying their bioactivity on endothelial cells (EC). Furthermore, we have established the exosomal miRNA profile at early gestation in women who develop pre-eclampsia (PE) and spontaneous preterm birth (SPTB). HTR-8/SVneo cells were used as an EVT model. The effect of oxygen tension (i.e. 8% and 1% oxygen) on exosome release was quantified using nanocrystals (Qdot®) coupled to CD63 by fluorescence NTA. A real-time, live-cell imaging system (Incucyte™) was used to establish the effect of exosomes on EC. Plasma samples were obtained at early gestation (<18 weeks) and classified according to pregnancy outcomes. An Illumina TrueSeq Small RNA kit was used to construct a small RNA library from exosomal RNA obtained from EVT and plasma samples. The number of exosomes was significantly higher in EVT cultured under 1% compared to 8% oxygen. In total, 741 miRNA were identified in exosomes from EVT. Bioinformatic analysis revealed that these miRNA were associated with cell migration and cytokine production. Interestingly, exosomes isolated from EVT cultured at 8% oxygen increased EC migration, whilst exosomes cultured at 1% oxygen decreased EC migration. These changes were inversely proportional to TNF-α released from EC. Finally, we have identified a set of unique miRNAs in exosomes from EVT cultured at 1% oxygen and exosomes isolated from the circulation of mothers at early gestation, who later developed PE and SPTB. We suggest that aberrant exosomal signalling by placental cells is a common aetiological factor in pregnancy complications characterised by incomplete SpA remodeling and is therefore a clinically relevant biomarker of pregnancy complications. (hide)
EV-METRIC
34% (69th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Pregnant; Spontaneous pre-term birth
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: HLA-G
non-EV: None
Proteomics
no
EV density (g/ml)
1.13-1.19
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Surespin 630/36
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
14.5mL
Sample volume (mL)
0.5mL
Orientation
Top-down
Rotor type
Not specified
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
Not specified
Fraction processing
Centrifugation
Pelleting: volume per fraction
Not spec
Pelleting: duration (min)
120
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Detected EV-associated proteins
HLA-G
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean +/- SEM;Other
Reported size (nm)
102 +/- 22
EV concentration
Yes
1 - 6 of 6
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV200153
species
Homo
sapiens
sample type
Cell
culture
Cell
culture
Cell
culture
Blood
plasma
Blood
plasma
Blood
plasma
cell type
HTR-8/SVneo
HTR-8/SVneo
HUVEC
NA
NA
NA
medium
EV-depleted
medium
EV-depleted
medium
EV-depleted
medium
NA
NA
NA
condition
8%
oxygen
1%
oxygen
HTR-8/SVneo
EV
treatment
Healthy
pregnant
Pregnant
Pre-eclampsia
Pregnant
Spontaneous
pre-term
birth
separation protocol
Density
gradient
dUC
Filtration
Density
gradient
dUC
Filtration
Density
gradient
dUC
Filtration
Density
gradient
dUC
Filtration
Density
gradient
dUC
Filtration
Density
gradient
dUC
Filtration
Exp. nr.
1
2
3
4
5
6
EV-METRIC %
56
45
34
34
34
34