Search > Results

You searched for: EV200033 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type separation protocol First author Year EV-METRIC
EV200033 2/2 Indoor dust Indoor dust DG
(d)(U)C
Dissolving indoor dust in PBS
Filtration
Dinh, Nhung Thi Hong 2020 71%

Study summary

Full title
All authors
Nhung Thi Hong Dinh, Jaewook Lee, Jaemin Lee, Sang Soo Kim, Gyeongyun Go, Seoyoon Bae, Ye In Jun, Yae Jin Yoon, Tae-Young Roh, Yong Song Gho
Journal
J Extracell Vesicles
Abstract
Indoor pollutants are important problems to public health. Among indoor pollutants, indoor dust cont (show more...)Indoor pollutants are important problems to public health. Among indoor pollutants, indoor dust contains extracellular vesicles (EVs), which are associated with pulmonary inflammation. However, it has not been reported whether indoor dust EVs affect the cancer lung metastasis. In this study, we isolated indoor dust EVs and investigated their roles in cancer lung metastasis. Upon intranasal administration, indoor dust EVs enhanced mouse melanoma lung metastasis in a dose-dependent manner in mice. Pre-treatment or co-treatment of indoor dust EVs significantly promoted melanoma lung metastasis, whereas post-treatment of the EVs did not. In addition, the lung lysates from indoor dust EV-treated mice significantly increased tumour cell migration in vitro. We observed that tumour necrosis factor-α played important roles in indoor dust EV-mediated promotion of tumour cell migration in vitro and cancer lung metastasis in vivo. Furthermore, Pseudomonas EVs, the main components of indoor dust EVs, and indoor dust EVs showed comparable effects in promoting tumour cell migration in vitro and cancer lung metastasis in vivo. Taken together, our results suggest that indoor dust EVs, at least partly contributed by Pseudomonas EVs, are potential promoting agents of cancer lung metastasis. (hide)
EV-METRIC
71% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Indoor dust
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
Dissolving indoor dust in PBS
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
EV density (g/ml)
N/A
Show all info
Study aim
Function
Sample
Species
Indoor dust
Sample Type
Indoor dust
Sample Condition
Control condition
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
180
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
150000
Density gradient
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
10%
Highest density fraction
50%
Total gradient volume, incl. sample (mL)
5.25
Sample volume (mL)
2.5
Orientation
Bottom-up
Rotor type
SW 55 Ti
Speed (g)
200000
Duration (min)
120
Fraction volume (mL)
0.5
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Protein Concentration Method
Bradford
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
129.6
NTA
Report type
Not Reported
EV concentration
Yes
Particle yield
as number of particle per gram of starting sample;Yes, other: 1.10E+11
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV200033 1/2 Pseudomonas aeruginosa Cell culture supernatant DG
(d)(U)C
UF
Filtration
Dinh, Nhung Thi Hong 2020 57%

Study summary

Full title
All authors
Nhung Thi Hong Dinh, Jaewook Lee, Jaemin Lee, Sang Soo Kim, Gyeongyun Go, Seoyoon Bae, Ye In Jun, Yae Jin Yoon, Tae-Young Roh, Yong Song Gho
Journal
J Extracell Vesicles
Abstract
Indoor pollutants are important problems to public health. Among indoor pollutants, indoor dust cont (show more...)Indoor pollutants are important problems to public health. Among indoor pollutants, indoor dust contains extracellular vesicles (EVs), which are associated with pulmonary inflammation. However, it has not been reported whether indoor dust EVs affect the cancer lung metastasis. In this study, we isolated indoor dust EVs and investigated their roles in cancer lung metastasis. Upon intranasal administration, indoor dust EVs enhanced mouse melanoma lung metastasis in a dose-dependent manner in mice. Pre-treatment or co-treatment of indoor dust EVs significantly promoted melanoma lung metastasis, whereas post-treatment of the EVs did not. In addition, the lung lysates from indoor dust EV-treated mice significantly increased tumour cell migration in vitro. We observed that tumour necrosis factor-α played important roles in indoor dust EV-mediated promotion of tumour cell migration in vitro and cancer lung metastasis in vivo. Furthermore, Pseudomonas EVs, the main components of indoor dust EVs, and indoor dust EVs showed comparable effects in promoting tumour cell migration in vitro and cancer lung metastasis in vivo. Taken together, our results suggest that indoor dust EVs, at least partly contributed by Pseudomonas EVs, are potential promoting agents of cancer lung metastasis. (hide)
EV-METRIC
57% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Cell Name
PAO1
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
UF
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
EV density (g/ml)
N/A
Show all info
Study aim
Function
Sample
Species
Pseudomonas aeruginosa
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
PAO1
EV-harvesting Medium
Serum free medium
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
180
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
150000
Density gradient
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
10%
Highest density fraction
50%
Total gradient volume, incl. sample (mL)
5.25
Sample volume (mL)
2.5
Orientation
Bottom-up
Rotor type
SW 55 Ti
Speed (g)
200000
Duration (min)
120
Fraction volume (mL)
0.5
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Polysulfone;Other
Protein Concentration Method
Bradford
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
81.9
EM
EM-type
Transmission-EM
Image type
Wide-field
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV200033
species
Indoor dust
Pseudomonas
aeruginosa
sample type
Indoor dust
Cell culture
cell type
NA
PAO1
medium
NA
Serum free medium
condition
Control condition
Control condition
separation protocol
DG
(d)(U)C
Dissolving indoor dust in PBS
Filtration
DG
(d)(U)C
UF
Filtration
Exp. nr.
2
1
EV-METRIC %
71
57